In general, a Triad approach can be expected to front-end load project costs to a greater degree than a traditional approach would, but also to produce significant cost savings over the life cycle of a project. The additional front-end costs are attributable to larger investments in systematic project planning activities and the potential need for demonstrations of method applicability and/or customization of analytical techniques and associated QA/QC. Cost savings come from a number of sources, including reduced per analysis costs, reductions in overall sample numbers to achieve project goals through dynamic adaptation of data collection work, cost savings associated with compressed schedules and fewer field mobilizations, and cost savings associated with improved remedial action performance (e.g., waste stream minimization). The expected cost savings are highly dependent on site-specific characteristics. In general the potential for cost savings are greater as one moves from characterization to remediation phases. Case studies have reported characterization savings on the order of 50% or greater as compared to data collection programs that develop the same level of confidence in the conceptual site model, but that are based solely on standard analytical techniques.