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Oversimplified 1980 s (Firsi-Generation)
Data Quality: Medel

Methods —= Data =

Screening ., Screening —,
M ethods Data
“Definitive” ., “Definitive’ —,
M ethods Data

Thismodel made sensefor the 1980s, but fails
to distinguish between important concepts

Analytical Methods: Data Quality : Decisions




First Generation Data Practices

= “Dataquality” judged by analytical methods & lalb
m Regulator-approved methods = “ definitive data’
m Uncertain extrapolations of dataresults

— Results from tiny samples extrapol ated to enormously
larger volumes

— Concentration values used as proxy for actual
contaminant mass & bioavailability




Was OK asa Starting| Point

m But 25+ years of experience doing things this way.
proves it not the “fiormula for success.”

m Does not
extent, ex

m Does not

nroduce confident decisions about nature &
posure & site closure

ead to cost-effective cleanups & monitoring

Why not? What I1s missing?




1)) Relationships between the Concepts
Is M ore Complex

Non-scientific
Methpd : consider ations
Selection  Representative

1 Sampling

Analytical Overall Decision
M ethods Data

ualit
Data Assessment/ Q y

M odifications |ntegrity

Analytical l

Quality Manage Uncertainty Manage Uncertainty
In Data Generation In Decision M aking




2) Real-World 1s M ere Heterogeneous than
the Old Data Quality Model Assumes

B Procedures assume contamination s relatively.
homogeneous (or Is randomly variable )

= Simply not true for most sites

— Release mechanisms create non-random spatial
patterning at macro & micro scales

— Physical transport > new spatial patterns, or
reduce heterogeneity

— Many contaminants behave like particul ates

— Degree of patterning depends on mechanism &
scale of observation




Y ou can't fiool Mother Nature!

In a clash between a model & reality,
reality alwayswins




A 2nd-Generation

Environmental Data Quality M odéel

Write a new recipe for successful projects
by changing the model to match the reality
revealed by our new toys!
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Building a New: Data Quality: M edel
Definition

Data Quality = “ameasure of the degree of
acceptability or utility of datafor a particular
purpose.” (USEPA QA/G-5, 2002)

B [he “purpose’ of data: make correct project decisions

® [hen, data quality depends on the data providing
accurate information about (i.e., representing) the “true
state” (of the decision unit) in the context of the decision

that the data user wants to make




Data Quality 1s aboeut More than Just
Chemical Analysis

Perfiect Non-
Analytical 4+ Representative
Chemistry Sample(s)

WRONG DECISION
“BAD” DATA

Data Quality =
Sample Representativeness + Analytical Quality

Need to Distinguish Analytical Quality from Data Quality




Triad Distinguishes between
Analytical Quality' & DataQuality

Data comes from samples

Therefore data quality must include sampling variables

Be clear:
IT intend to refer only to analytical side, then say
“analytical quality”

But If say “data quality,” be prepared to explain how
sampling variables are managed.




“Representativeness” Used to Viean
“Average

m Problem is heterogeneity. Concentrations can range orders
of magnitude over very short distances

m |f want an average, need to define “average over what”

— Often not defined

— When this variable not controlled, analytical results are
variable

— If undefined, no way to decide which result is “right”

m Even if could determine accurately determine the average,
will It support good decisions about risk or remediation?




What I1s“average’ for this Site?

Jul 2000 - PID Plume
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“Representativeness™ as a Characteristic

m ASTM & ANSI/ASQC define as

— acharacteristic of interest
— 0f a population as defined by the project objectives

= Could be an average, but allows for characteristics
other than the average

m [orcesthe desired characteristic to be defined

m Allowsfor the CSM to distinguish populations
using a decision-based rationale




[Data should be Representative of a
“Trarget Population”

m Triad usage consistent with ASTM & ANSI/ASQC

m “ Characteristics of interest” grounded jointly in the
CSM & In the decision

m Decision defines what populations are of interest

m Different populations occur at both macro & micro
scales

= \Want to design sampling programs that can stratify
populations

— Ensures both representative data & cost-effective decisions




Miacro Population Segregation

m \Wenatchee site: 3 distinct soil decision-driven pop S

— Compliant pepulation (remain on site)
— Mod non-compliant pop (landfill)
— Severely contaminated pop (Incinerate)

g R
iy, I - l:,..lr'i:

m No segregation = incinerate all: ~ $1.2 miIIioh (708 tons)

m Actual cost to clean closure using Triad = $589K
— 56 tons incinerated, 334 tons landfilled

m Cost projected to be ~ $1.2 million if segregate by
traditional data




How Was this Possible?

m Pesticide | A kits guided dynamic work plan: removed
and segregated contaminated soil for dispoesal
2301 A analyses (w/ thorough QC) + 29 samples for 33 analytes

Managed sampling unecertainty: Managed

had very high confidence that all as additional QC on
contamination above action levels critical samples. confirmed &
was located and removed perfected field kit action levels

m Clean closure data set
— 33 fixed lab samples for analyte-specific pesticide analysis
— Demonstrate full compliance with all regulatory requirements for all
33 pesticide analytes to >95% statistical confidence the first time!

m Field work completed: <4 months; single mobilization
http://cluin.org/charl edu.cfm#site char



mobilizationhttp://cluin.org/char1_edu.cfm#site_char

Populations with Different Spatial Distributions Need

Dififierent Sampling Strategies
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Tniad Representativeness Has 2 Stages

m 1%: Needtotest & refine the CSM until confident
that populations of Interest are identified

— “Populations” grounded in physical reality & decisions

m 2" Once CSM is refined enough to understand
populations, then take samples known to represent
those populations in order to measure the
characteristics of interest

m Cost-effective and efficient when the 2 stages are
blended together in real-time workflow




One-Size-Fits-All “ Representativeness’
Not Possible

[For example:

— Data set representative ofi contact over an exposure area
should estimate the average concentration over the
volume of the “exposure unit”

— Data set representative of an exposure pathway must
detect & characterize a particular feature of interest (often
not an average). For example:

» <200 mesh soll fraction is representative of dust exposure
pathway, Pb conc = 2000 ppm

» “average’ (homogenized bulk) soil Pb conc = 930 ppm
(average will underestimate exposure)




15-Generation Practices Allowed Datato e
Coallected without Coensidering the CSM

1) The possibility of different populations usually net
considered

2) Sampling & analytical variables remain uncontrolled
during data collection

3) Different populations can be unknowingly mixed -
Intermediate results

4) Data user doesn’t understand what population the data
represent - misinterpret them




Heterogeneity Impacts Low-Flow Purge/Pumped Samples

ALTITUDE, IN FEET ABOVE SEA LEVEL
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http://water.usgs.gov/pubs/wri/wri024203/
http://water.usgs.gov/pubs/wri/wri024203/

ALTITUDE, IN FEET ABOVE SEA LEVEL

Same Well Field—Passive Diffusion Samplers
Preserves Distinct Populations
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http://water.usgs.gov/pubs/wri/wri024203/
http://water.usgs.gov/pubs/wri/wri024203/Same

Uncontrolled Sampling Variables Mix Different

Populations to Produce | naccurate CSMIs
same well field...2 different
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Figure 6. Vertical distribution of TCA concentrations in ground-water samples collected with the diffusion samplers
and submersible pump.

sampl e collection techniques
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Figure 6.—Continued.

From USGS Report 02-4203 (2002)



http://water.usgs.gov/pubs/wri/wri024203/
http://water.usgs.gov/pubs/wri/wri024203/same

No Triad project should ever be run without a CSM
that articulates what 1s known or suspected about
contaminant populations and environmental factors
controlling fate & transport

Thisdoes NOT mean that you have to use expensive
computer fate & transport models.




Tniad's Nuts & Bolts of Data
Representativeness

SAMPLING UNCERTAINTIES




\/ariables that must be Controlled to Know What
Population the Data Represent

Sampling Rep. Analytical Rep.

Preservation .
Preparation

M ethod(s)

All linksin the must be intact
for data to berepresentative of the decision!




IThe concept of sample support Is crtical to
data representativeness, but least understiood

Sampling Rep. Analytical Rep.

All linksin the must be intact
for data to berepresentative of the decision!




[Facets of -~ Sample Support”

Physical properties of asample (or subsample) that
nelp determine what the analytical result will be

ncludes
e volume
e orientation

Icle size




Typical regulatory and field
practices assume that the
size/volume of a sample has no
effect on analytical results for
contaminant concentrations.

That assumption doesn’t hold
true when environmental
heterogeneity exists,

sample volume can deter mine
the analytical result!

Sample Support: Size M atters!

The Nugget Effect

O O
Sample
Prep

Although there is the same
contaminant mass in the captured
nuggets, different volumes of
cleaner matrix will produce
different sample concentrations

after sample homogenization.
18




Smaller supports are more variabl e hecause many.
contaminants lbenave like particulates

&
= different
volume samples

Contrast different
concentration and
sample volume
Scenarios.

Left panels
represent higher
concentrations
than right panel.

Top panels
represent smaller
sample supports
than bottom panels
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Sample Support: Includes Spatial Orientation

Surface layer
of interest

The decision driving sample collection:
Assess contamination resulting from
atmospheric deposition

Given that the dark
surface layer is the soll
layer impacted by
atmospheric deposition
relevant to this
project:

Which sample support
(white areas #1, #2, or
#3, each homogenized
before analysis)
provides a sample that
IS representative of
atmospheric deposition
for this site?

19



Diffierent Sample Support Changes Analytical
Results for GW

Soil Conductivity
LOG 1
(mSmM)

MIP = membrane-

25 Interface probe (w/
| | | | ECD detector)

Sample support for MIP
on scale of mm to inches

N Sample support for

Vertical Profile .

Results of TCE discrete-depth GW
LRl samples on 6-in scale

Sample support for
— traditional well sampling
——— 750uglL on scale of feet

2200 ugfL
5800 uglL

19 ugfL

Graphic adapted from
Columbia Technologies
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GW samplie supporit IS alse afiunction of

differential permeability of the stratigraphy.
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Purging Creates a Different Sample Support than a

Diffusion Sampler = Diffierent CSMs

Interval, 100 micrograms per liter

TCA resultsfrom
purged/mixed
well water

260

Well No.

(Altitude of the top of the well,
in feet above mean sea level)

Water-level altitude, April 1999,
in feet above mean sea level

discrete well water

A same well field... 2 different|sample collection techniques "
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Figure 6. Vertical distribution of TCA concentrations in ground-water samples collected with the diffusion samplers
and submersible pump.



http://water.usgs.gov/pubs/wri/wri024203/
http://water.usgs.gov/pubs/wri/wri024203/same

Sample Support Can Spéelll the Difference Between

Hits and NDsin the Same Well

Pufped |
grab
sample
result | M 240w
i g0 \""'-«
z
DI:I—:: 95
§ - grab M 0.87
= 100 - sample = &0 -
= 120 ppb
@ 105 L ! : I | - ¥24

100 150 200 250 300
CONTAMINANT CONCENTRATION, IN MICF

EXPLANATION

CONTAMINANT CONCENTRATION IN SAMPLES
COLLECTED WITH DIFFUSION SAMPLERS
—&— 1,1-DCE ——
—a— TCA ——

CONTAMINANT CONCENTRATION IN SAMPLES
COLLECTED WITH SUBMERSIBLE PUMP
-=-=- 1,1-DCE -——
-- TCA

Figure 5. Comparison of selected volatile organic compound concentrations from
and a submersible pump for wells with greater than 20-foot screened intervals in A

Zoom to Wdl 6-S-21

PDS TCA results

Vertical distribution pattern of
DCE issameas TCA, but
concentrations lower so that
purging/mixing with cleaner
water could diluteto ND,
creating a misleading CSM

From USGS Report 02-4203 (2002);
http://water.usgs.gov/pubs/wri/wri02

4203/


http://water.usgs.gov/pubs/wri/
wri02http://water.usgs.gov/pubs/wri/wri024203/4203/Zoom

Different Particle Sizes Give Different Results

Soil Grain Size
(Standard Sieve M esh
Size)

Pb Conc.in
fraction by
AA (mg/kg)

L ead Distribution
(% of total lead)

Soil Fraction-
1zation (%)

Greater than 3/8” (0.375") 18.85 10 0.20

Between 3/8 and 4-mesh” 4.53 50 0.24
Between 4- and 10-mesh 3.65 108 0.43
Between 10- and 50-mesh 11.25 165 2.00
Between 50- and 200-mesh 27.80 836 25.06

L ess than 200-mesh 33.92 1,970 72.07

027
0] )
Totals 100% (Wi- ) 100%

For this matrix, sampling/subsampling that captureslarger particles
will get lower resultsthan proceduresthat get the smaller particles!!
Cannot assume “average” isrepresentative of the decision!

Adapted from ITRC (2003 );

39



http://www.itrcweb.org/SMART-1.pdf

Miacro Heterogeneity: Affects
Sampling Design
Sampling Rep. Analytical Rep.

e.d.,'number of samples,
locations, grab vs. composite
samples




Wil Y our Sampling Design Avold Decision Errers
from Misleading Grald Sampling?

l_ Analytical (between methods) ~ 5%

331 On-site

Sample Location

1,220 Lab

Figure adapted from
Jenkins (CRREL ), 1996

24 400 On-site
27,700 Lab

500 On-site
416 Lab

39,800 On-site
41,400 Lab

3 164 On-site
136 Lab

27,800 On-site
42.800 Lab




Miicro Heterogeneity, limpacts
Sulbsample Support
Sampling Rep. Analytical Rep.




Smalller Sulbsamples Are Miore Varable

Subsample Support
(after sample was
dried, ball-milled,
sieved <10-mesh)

(¢**Am in Soil Study)

Coefficient
of
Variation

Number of
subsamplesrequired
to estimate the sample
true mean = 25% *

Number of
subsamplesrequired
to estimate the sample
truemean = 10% *

1g

0.79

39

240

109

0.27

28

259

0.30

2049

0.12

5
6
1

100 g

* Using classical parametric statistics at 95% confidence

0.09

Adapted from DOE (1978)

Major problem!! Advancing analytical science use smaller and
smaller subsamples> morevariable results!




What 1s the Correct Sample Support?

m Sample support must represent or mirrer the “decision (or
population) support”

m Decision/population support = the physical characteristics
of the “decision unit” (i.e., the population of: interest)

— Spatial properties of the population: 3-axis matrix

dimensions, particle size
— Time properties (If timeis avariable)

m Sample collection & processing procedures must mirror
these physical properties to maintain the data
representativeness chain

|f decision details unknown, then decision support unknown!
Then it’simpossible to plan for representative data collection!

44
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Integrating these Concepts Into Practice
Is\What the Trriadl A pproeachi s about

e

4 ‘\‘44

Real-time Measurement
Technologies




Mianaging| Data Uncertainty: Means
Mianaging the Components

Analytical Uncertainty Total Uncertainty
., | Ex 1

T Sampling Uncertainty

Ex. 2




Mianaging the CSM & Decision Uncertainty

Fixed Lab
Analytical Ex 1

Uncertainty
Sampling Uncertainty

¢cccecccccee
¢ece
(O O O (3 O O Remedy: remove hot spots

¢¢¢¢%§%§¢¢
¢ccccecceccece

Fixed Lab Data Ex 3

Rapid
Analytical
Data

Decreased Sampling Variability
after Removal of Hotspots

Sampling Uncertainty Controlled
through Increased Sampling
Density to Segregate Populations J=Nge!




Recognize Methods Strengths & Limitations

Costly standard
analytical methods

'

Low DL + analyte specificity

‘

M anages analytical uncertainty
(analytical quality)

Iﬁ—

“Definitive’” analytical quality
quality

Cheaper, rapid
analytical methods

'

High spatial density

}

M anages sampling uncertainty
(sampling representativeness)

N\

“Definitive” sampling quality
screening analytical
quality 49




Updating the Data Quality Model te: Cope with
IHeterogeneous Matrices

Cheaper, rapid (lab? field? std? Costlier rigorous (lab? field? std?
non-std?) analytical methods non-std?) analytical methods

' '

High density sampling Low DL + analyte specificity

| |

Manages < M anages analytical

& sampling
uncertainty

Collabor ative Data Sets

uncertainty

Collaborative data sets complement each other so that all sources

of data uncertainty important to the decision are managed
50




Triad Projects Use Demonstrations of
Miethods A pplicability

= A “pilet study™ that helps to optimize tool
selection and technical operations (boeth field tools
& off-site analytics)

= “Killsmany birds with 1 stone” when designed
thoughtfully (see handouts)

m Critical If want realistic split sample comparisons




QC Isan Important Triad Compenent

m Goal Isto match project-specific QA/QC protocols
fior both field and fixed lab methods to Intended data
use to manage decision uncertainty.

= Difficult to achieve when oversight is checklist
oriented.

m Purpose of QC is evaluate & demonstrate control
over data generation variables

m Most powerful QC check of all = real-time
evaluation of compatibility between data results and
the CSM




