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ABSTRACT 
 
Cost-effective and efficient site remediation and scientifically defensible decisions require site 
characterizations that are representative of site conditions. The Triad Conceptual Site Model 
(CSM) is at the center of a continually improving site characterization process that begins during 
Systematic Planning and ends after the last data are developed. To gain the full benefit and 
greatest cost effectiveness, the process of CSM refinement should be performed in real-time. 
Thus, the use of collaborative data is critical for evolving and maturing the CSM.  In the field, 
through the use of all available data that are of known quality, a skilled and experienced field 
team can collect sufficient site information to mature the CSM in a timely manner. To facilitate 
the planning and execution of such a process, an easily understandable framework is needed to 
structure data quality to support scientifically defensible decisions and efficient projects.  The 
currently used data quality framework focuses heavily on analytical quality, but is relatively silent 
on the subject of how sampling uncertainties impact data quality.  Since it is well known that 
contaminant heterogeneity introduces several sampling-related variables that critically impact 
data quality, a successful data quality framework must be able to account for the contributions of 
both sampling and analytical uncertainty to data quality.  Because of the wide variety of decisions 
faced by site cleanup professionals, a constructive data quality framework must also anchor data 
quality assessment in the specific needs of the decision-making process.  This paper explores 
such a framework.  
 
 
INTRODUCTION 
 
The full benefits of the Triad approach are realized when systematic planning to manage decision 
uncertainty is combined with dynamic work strategies (Robbat, 1997) and real-time measurement 
technologies throughout the project lifecycle of characterization, remediation, and site reuse 
(Exhibit 1; Crumbling, et al 2001; USEPA, 2004). Systematic planning is the period in the project 
when the initial Conceptual Site Model (CSM) is developed.  A Triad-based CSM serves as a 
mechanism to achieve consensus understanding among the various stakeholders about the nature 
and extent of contamination, potential receptors, potential risk mitigation measures, and 
ultimately, the most satisfactory disposition of the site. Systematic planning is the time when 
project end points are clearly articulated, the range of remedial approaches defined, clean up 
criteria established, and the general investigation methods and procedures are developed. 
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Dynamic work strategies are integrated systems of decision logic and decision rules that define 
how field decision-making will proceed using the information provided by the real-time tools 
selected for the project. The decision logic and rules are linked to the CSM, such that as 
information on site contaminants and conditions are developed through real-time data collection, 
the CSM is tested and continuously refined to account for newly discovered conditions. Decision 
logic and rules are developed by consensus among the project team and stakeholders during 
project planning.  The written decision logic guides the field team along approved lines of 
decision-making, while enabling the investigation to proceed efficiently in real time.  
 
Real-time measurement technologies include all the tools that generate and manage site 
information rapidly enough to support dynamic work strategies. They include a broad range of 
available tools for contaminant sampling and analysis, soil and geophysical characterization, and  
location information (geographic position system), etc., as well as data management and display 
software.  Any data generated in the field are useable as long they are of known quality (i.e., 
quality control (QC) is within performance limits), are appropriate to the decision at hand, and are 
based on prior stakeholder agreement.  
 

 
Exhibit 1. The Triad approach components (USEPA, 2004) 
 
 
 
Literature on the use of innovative site management strategies, including the Triad Approach, is 
emerging in the form of research, guidance from government and standards-setting organizations, 
and case studies (For more information about innovative site management strategies see 
Applegate & Fitton, 1997; ASTM, 1998; ASTM, 1998a; ASTM, 1999; Burton et al, 1995; 
Crumbling et al, 2001; CT-LUSTP, 2000; Ellerbusch et al, 2004; Mack et al, 2003; Robbat, 1994, 
1997; TNRCC, 1995; USEPA, 1997, 2000, 2001; Woll et al, 2003). 
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The large volume of data produced through a Triad Approach investigation generally demands 
that a pre-defined data management system be used to store and process data results in real-time. 
The data management system should be constructed to accommodate the overlapping 
collaborative methods and procedures that will be used to manage both sampling and analytical 
aspects of data uncertainty.  The data management system is also useful for managing the QC 
data generated during implementation of the project’s quality assurance project plan (QAPP).   
 
In addition to the QC exploited by traditional projects, the real-time nature of Triad projects 
offers three additional quality control mechanisms that greatly increase project efficiency:  
 

1) Real-time review of QC results to evaluate whether the sampling and analytical 
techniques are performing as required (i.e., are in control), with immediate 
intervention if they are not; 

2) Real-time adjustment or focusing of QC procedures and frequencies to quickly 
identify and reduce data uncertainty in relation to project decisions as the CSM 
evolves and site conditions are better understood; and 

3) Real-time comparisons between newly acquired real-time data and the current CSM 
to detect incompatibility or conflict. 

 
Real-time detection of analytical performance issues minimizes the time and resources spent 
generating and managing useless data.  Real-time focusing of QC means that QC is fine-tuned to 
address decision uncertainty as the project unfolds, so that precious dollars are spent only on 
those QC parameters that most benefit the project. Iterative real-time evaluation of compatibility 
between the CSM and new data as it is being generated serves as a powerful quality assurance 
mechanism.  Conflict between the data and the CSM triggers an appraisal to determine whether 
problems have arisen in the sampling/analytical process (so they can quickly be corrected), or 
whether the existing CSM is inaccurate (requiring a revision of the CSM to match the new 
information).   
 
MATRIX HETEROGENEITY AND DEVELOPING ACCURATE CSMs 
 
Environmental matrices are heterogeneous at both the macro and micro scales.  Generating data 
sets that accurately represent important spatial heterogeneities is critical to developing a CSM 
that reflects relevant site conditions.  Although sample data may be correct in the sense that the 
analytical results are accurate for the tiny amount of material analyzed, extrapolating those results 
to the much larger volumes encompassed by sub-units of a site, or the entire site, can easily create 
a false picture.  This is considered a form of sampling “error.”  Sampling error can contribute to 
misleading CSMs even though the analytical method is performing correctly.  Misleading CSMs 
can lead directly to erroneous assessment of risk or faulty decisions about the remedial strategy.  
 
Under the traditional approach to site characterization, over-reliance on an Area of Concern 
(AOC) approach and high quality (but expensive) analyses permits too few samples to be 
collected, risking generation of a faulty CSM.  There are a multitude of underlying reasons and 
reinforcing factors that can lead to this problem, including: 
 

• AOCs are by definition biased toward contamination, so the volume of material that is 
actually compliant may be underestimated, causing cleanup and redevelopment cost 
estimates to be needlessly inflated. 
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• Representative site-wide sampling plans have sometimes conflicted with AOC-focused 
sampling plans.  

• More expensive high quality analytical techniques reduce the number of samples in a 
given sampling budget. 

• Regulation-based characterization regimes, sometimes emanating from an AOC-driven 
approach, are often implemented as prescriptive sampling and analysis strategies that 
leave little room to adjust to project-specific needs and site-specific conditions. 

 
When too few samples are collected, there is little choice but to extrapolate the results of the tiny 
samples analyzed in the laboratory (sometimes less than one gram) to volumes of matrix that may 
be billions of times larger.  High concentration results may be assumed to represent the 
concentration of large volumes or areas of matrix, implying that a large contaminant mass is 
present. But the actual volume of contaminated matrix could actually be quite small.  Similarly, 
low concentration results may be inappropriately interpreted to assume that large areas are 
“clean,” when that is not true.  Both decision errors lead to inefficient projects that waste time and 
money.  The later condition is illustrated in the upper panel of Exhibit 2, which depicts a 
sampling design where too few analytical samples were collected.  Despite the high quality of the 
analyses, important areas of contamination are missed and the true extent of the contamination is 
inaccurately defined.  Whenever the sampling density (number of samples per unit volume of 
environmental media) is insufficient to capture the effects of heterogeneity, there is a high 
likelihood that incomplete or inaccurate CSMs will be produced.  Estimates of the nature and 
extent of contamination may be seriously biased, resulting in insufficient remedial designs that 
lead to more sampling and remediation as errors are discovered.  In contrast, the lower panel of 
Exhibit 2 illustrates the more accurate CSM developed when sufficient samples can be collected 
to detect and accurately delineate impacted areas.   
 

 
Exhibit 2. Sample Representativeness and Uncertainty.  By collecting a larger number of 
less expensive (¢) samples a more complete understanding of site conditions can be 
achieved than by expensive high quality analytics ($) alone (ITRC, 2003). 
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The Triad approach recognizes that to develop an accurate CSM, high-density sampling is needed 
to understand contaminant distributions and the effects of heterogeneity on sample results.  
“Sampling density” may refer to the number of samples per area or volume of matrix, or to the 
number of samples used to support a particular decision.  Samples per matrix volume can refer 
both to the number of discrete samples taken from different locations throughout the matrix, and 
to the number of repeat measurements taken from (for example) the same jar of soil to 
characterize within-sample variability.  Triad also recognizes that different areas of the same site 
will probably need different sampling densities.  Higher densities target those areas where 
decisions are the most uncertain.  This goal can be achieved without needing to analyze all 
samples by the most expensive, high quality methods.  In most cases, contaminant patterns can be 
understood and the CSM refined well enough to delineate “no-further-action” vs. “action-
required” areas without having to analyze all of the samples by definitive analytical methods.  
However, judicious application of high quality analytics is generally required to supplement less 
expensive testing for the purpose of developing associative or predictive relationships that permit 
the less rigorous analyses to be interpreted correctly.  Integrating a variety of analytical options 
and data types to build, refine, and polish the project’s CSM is termed “collaborative data 
management” by Triad practitioners. 
 
Since field work is most efficient when it can be adjusted in real-time, inexpensive methods that 
generate data in the field are extremely useful.  But traditional notions of data quality and 
inappropriate usage tarnished the reputation of field methods through the 1990s, limiting their 
acceptance despite clear evidence that projects can be more efficient and less costly when high 
density field analyses were used.  If we are to overcome the institutional hurdles now faced by 
field methods, a data quality framework is needed that ensures that field methods are used 
appropriately.  That framework would explicitly blend high quality analytics with less expensive 
data generation techniques in ways that maximize their respective strengths but compensate for 
their respective weaknesses.  These mutually supporting data sets would allow maximal utility of 
all kinds of data for purposes of efficient, real-time site characterization, as well as site reuse 
design, risk assessment, remediation, and compliance.  The solution is to use field and fixed 
laboratory analyses in a collaborative data management strategy as illustrated in Exhibit 3 on the 
next page.  
 
Collaborative data sets rest on the concept that less expensive methods should be used to increase 
sample density and build the CSM—a prime requisite to establish the representativeness of any 
individual sample (i.e., the ability to confidently extrapolate the results of 1- or 10-gram 
analytical samples to “represent” larger volumes of matrix).  Where unresolved analytical 
uncertainty remains, higher quality analyses are then performed on samples for which the 
representativeness is already established. This paper posits a need for a conceptual framework to 
support collaborative data management programs both in the field and in regulatory programs. 
 
DATA USE CATEGORIES AND COLLABORATIVE DATA SETS 
 
It would be ideal if ALL data could be “gold-plated,” that is, of maximum possible quality 
suitable for every conceivable decision under all potential land reuse options.  However, as 
explained above, cost and logistics make this ideal impossible.  Sole reliance on the highest 
analytical quality is also impractical when time is factored in – two-week analytical turn-around 
times and greater are not unusual for fixed laboratory analysis, hindering chances for real-time 
field decisions.  Yet the environmental community has labored for two decades under a paradigm 
that treats data produced in a certified, fixed laboratory as if it is gold-plated, automatically of the  
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Exhibit 3. Collaborative Data Sets Increase Data Quality in Heterogeneous Matrices (DL 
= Detection Limit) (adapted from Crumbling et al, 2003) 
 
 
highest quality, free from any uncertainty, and suitable and sufficient for any potential decision.  
A corollary of this first-generation data quality model is the mistaken impression that any data 
produced outside of traditional certified laboratories should be suspect, or what is worse – 
summarily rejected as unusable.  But this paradigm ignores the impact of sampling uncertainty on 
data quality.  Sole reliance on high analytical quality is insufficient to overcome the data 
uncertainties created by heterogeneity and sparse data points. 
 
The first generation data quality model discourages the use of real-time tools, relegating their 
results to “screening” quality, while simultaneously sending the message that “screening” is never 
quite good enough.  The label “screening” provided cover for practitioners to use poorly trained 
operators and inadequate documentation, further reinforcing regulators’ suspicions that the data 
were probably untrustworthy.  This self-fulfilling prophecy became a vicious circle that has 
hampered the environmental community’s ability to learn how to use these tools efficiently and 
defensibly.  Suppression of field methods and the failure of fixed lab analysis to provide 
sufficient data density led to a pattern where costly, inefficient, and flawed site characterizations 
were accepted as the normal state of affairs.  Furthermore, the comforting illusion that fixed lab 
methods will robotically provide iron-clad data has long allowed the environmental community to 
avoid acquiring the skills it desperately needs to assess real-world data uncertainty, control for 
that uncertainty’s impact on decision-making, and thereby improve the quality of restoration 
projects. As long as data users could be lulled into believing that good quality data was 
guaranteed by simply selecting the “approved” analytical method, the community could pay lip-
service to the idea of matching data quality to data use, without ever really learning how to do it.  
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In contrast to the prevailing paradigm, the second-generation data quality model used by the 
Triad approach acknowledges that both sampling and analytical variables impact data quality,  
 
and that data quality can only be assessed in the context of specific data use. Our experience with 
Triad projects has found that transitioning from the overly simplistic first-generation data quality 
model to the more complex (but realistic) second-generation data quality model is difficult for 
many regulators and practitioners. They have difficulty 1) integrating the idea of sampling 
uncertainty into the current data quality classification scheme, and 2) treating non-traditional 
analyses (often field techniques) as an equal analytical partner. To facilitate Triad projects, a new 
framework for integrating data sets based on data use is needed to support implementation of 
collaborative data sets.   
 
To create an alternative to the traditional “analytical quality = data quality” paradigm, we have 
found it useful to create “data use categories” that capture the intended data use and match it to 
the sampling and analytical quality of the data.  Unlike traditional data classification schemes, 
Triad-friendly data use categories cannot be defined simply according to the analytical technique 
used to generate the data.  As noted above, the analytical technique alone is a poor predictor of 
data usefulness.  As will be covered in much greater detail later in this paper, the same technique 
may produce data that falls into several different categories, even on the same project.  For 
example, X-ray fluorescence (XRF) analysis for metals can produce data effective for supporting 
a wide range of decisions encompassing restricted and unrestricted land use options.  The 
usability of XRF data depends on the analyte (XRF may report more than 10 analytes in a single 
analysis), method modifications, sample selection and processing, matrix interferences, and of 
course, the decision (e.g., contamination delineation, regulatory compliance, and risk assessment) 
to which the data are applied.  Trying to classify data quality according to just the analytical 
method or laboratory certification status ignores too many important variables that greatly impact 
data usability. 
 
Any proposal for a data integration framework must be able to embrace the individual factors 
determining data’s ability to support science-based decisions.  These factors arise from the 
intersection of the analytical technique, the regulatory oversight structure, site-specific matrix 
characteristics, and project goals.  They include (but are not limited to): 
 

• Sample detection/quantitation limits and their relationship to the project’s decision/action 
levels or thresholds; 

• Compound or analyte specificity of the method or instrument; 
• Sample support considerations for sample collection, preparation, sub-sampling, and 

extraction/digestion methods, as well as the determinative analytical method; 
• Regulator acceptance/certification status; 
• The presence of matrix-specific physical or chemical interferences that impact sample 

collection, processing and/or analysis; and 
• The level of quality assurance/quality control (QA/QC) used to evaluate the performance 

of each component in the chain of sampling and analytical techniques.  
 
The example framework described below was originally developed to support decision-making 
regarding contaminated soil in Brownfields projects.  The framework is offered for consideration 
by the cleanup community.  More testing by Triad practitioners is needed to ascertain whether 
this scheme is general enough to work across widely different project scenarios.  This paper does 
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not directly address data sets used to support designs for engineered remedial systems; it 
describes a data quality classification framework grounded in data use and supportive of  
collaborative sampling and analytical schemes able to manage data uncertainty in the context of 
characterization, compliance, and risk-based decisions.  
 
 
DATA USE CATEGORIES DESCRIPTION 
  
Four data use categories, briefly summarized in Table 1 on the next page and described in greater 
detail in the remainder of this paper, fall into two primary areas:  
 

1) Data used primarily to rapidly develop the CSM during dynamic field programs and to 
manage sampling uncertainty as depicted by the left-hand side of Exhibit 3:  

 
a. CSM:dirty 
b. CSM:clean  
 

2) Data used to refine (“polish”) the CSM by managing analytical uncertainty relevant to 
regulatory and risk based decisions which require analyte-specific, analytically unbiased 
data sets as indicated on the right-hand side of Exhibit 3: 

 
a. CSM:compliance 
b. CSM:risk-calc 

 
 
Regulators are most concerned with the quality of chemical data for pollutants. However, 
contaminant data are not the only kind of data used to develop and mature CSMs.  All forms of 
site information, from chemical data to the site history to geotechnical and geophysical data, 
should be used to construct and refine the project CSM.  There can also be considerable overlap 
in how data sets are used.  Cost-effectiveness and project efficiency is increased as data sets are 
designed to serve more than one use.  However, for the sake of the proposed categorization 
described below, only the primary role of the data will be highlighted. 
 
These four categories form the basis for an integrative framework, a collaborative data strategy, 
that can be used to facilitate pre-field planning discussions and management of field and fixed 
laboratory data produced in real-time.  They can be used to communicate with regulators and 
stakeholders about how different types of data will be integrated into a transparent, defensible, 
well-documented decision-making process. 
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Table 1.  Summary of the Four Data Use Categories Covered in this Paper 
 

Data Use 
Category 

(Short-Hand 
Designation) 

Application Activity Supported Limitations Typical of 
this Category 

Conditions for Use 
 

Data Use Categories Supporting Rapid, Cost-Effective CSM Development 

 
CSM: dirty 
(used to build 
the CSM) 

CSM development 
for situations with 
elevated 
concentrations above 
action levels 

Used to rapidly process 
high numbers of samples 
to advance CSM and 
delineate impacts 

Compound specificity or 
detection limits are 
insufficient to support 
regulatory decisions about 
“clean” areas 

Normally applied with 
dynamic work strategy since 
primarily use real-time 
measurement devices 

 
CSM: clean 
(used to build 
the CSM) 

CSM development 
for situations with 
lower concentrations 
at or below action 
levels 

Define “clean” boundaries 
of impacted areas with 
confidence to identify 
areas/volumes of the 
CSM 

Compound specificity and 
detection limits are 
sufficient to meet action 
levels, but not sufficient to 
comply with regulatory 
certification requirements 

Applied in conjunction with 
CSM: dirty using a 
collaborative data 
management strategy and 
dynamic work strategy 

Data Use Categories Requiring More Stringent Management of Analytical Uncertainty 
 
CSM: compliance 
(used to polish the 
CSM) 

Satisfies regulatory 
requirements for 
lab certification 
and strict 
adherence with 
method QA/QC 
and reporting 
deliverables 

Effective for meeting 
expectations for 
demonstrating site 
closure and “no further 
action (NFA)” 
decisions and/or 
compliance monitoring  

No limitations on data 
quality decisions with 
regard to analytical 
method; however a 
mature CSM is needed to 
establish sample 
representativeness 

Collaborative data 
management strategy: samples 
collected after CSM has 
evolved sufficiently to guide 
selection of appropriate 
locations & sample processing 
procedures 

 
CSM: risk-calc  
(used to polish the 
CSM) 

Most stringent 
analytical quality 
from both scientific 
and regulatory 
perspective  

Quantitative risk 
calculations to assess 
human health and 
ecological exposure 
from site chemicals 

No limitations with strict 
adherence to laboratory 
certifications and method 
QA/QC; mature CSM 
required to establish 
sample representativeness 

Collaborative data 
management strategy: sample 
locations identified after CSM 
has matured sufficiently to 
define exposure pathways and 
populations  

 
 
 
The CSM:Dirty Data Use Category – Data that Are Effective for CSM Development 
in Situations With Elevated Concentrations 
 
General Description 
 
This data-use category includes data sets that are suitable for real-time detection, delineation, and 
modeling of higher concentration (“dirty”) areas, especially those areas believed to exceed the 
established decision threshold.  Using high sample throughput rates, this data use category is 
intended to support the kind of high-density sampling that rapidly advances the development of 
the CSM.  Typically, the techniques used (to generate data falling into this category) report only 
higher analyte concentrations with confidence.  At lower concentrations, results tend to be too 
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uncertain to support confident decisions at lower regulatory thresholds. Commonly this is because 
the quantitation limit and/or analyte specificity are inadequate, so lower concentration (“cleaner”) 
areas cannot be demonstrated with sufficient confidence.  Despite their lower analytical rigor, the 
data in this data use category will be of known quality as long as associated QC demonstrates that 
sampling and analysis are under control and adequate to support the intended data use.  Other 
possible data uses within this category are instances where one analyte is used as a surrogate to 
indicate the presence and approximate concentration of another analyte(s) because a predictive 
relationship between them can be demonstrated (not necessarily using statistical regression).  The 
CSM:dirty category applies when the predictive relationship is confident enough to predict 
areas/volumes that likely exceed the established action threshold, but is not confident enough to 
predict non-exceedences. 
 
To summarize, data in the CSM:dirty category are generally produced by high throughput 
sampling and analysis procedures that allow large numbers of samples to be processed and 
reported in real-time.  The sample support varies from larger (if some form of sample 
compositing or large volume mixing is used) to quite small (e.g., in situ sensor systems), 
depending on data needs.  Small sample supports can be very useful for delineating discrete 
contaminant populations and distribution intervals, but this must be balanced against the potential 
for “nugget” effects (isolated small pockets of contamination) that increase the variability in a 
data set and can bias data in a non-representative way.  Increasing the number of readings to 
understand whether micro-heterogeneity is a problem for the matrix and analyte under 
investigation may control the uncertainty introduced by small sample supports.  Through its  
contribution to CSM development, this data category is important (along with the CSM:clean 
category) to help establish the representativeness of other samples. 
 
Benefits of the CSM:Dirty Data Use Category  
 
The chief benefit of the CSM:dirty data use category is to allow rapid development and 
refinement of the CSM for areas with higher concentrations.  Although the data are not generally 
effective for delineating “clean” zones, the information provided allows estimation of the number 
of distinct populations and a coarse estimate of variability in those populations across the site. 
Another way to state this is to say that the CSM:dirty category helps the project team to rapidly 
evolve the CSM through an understanding of contaminant distributions.  This understanding is 
necessary to support project decisions that require the following inputs:  
 

• Identify significant sampling variables and the mechanisms to control for those variables 
as needed to manage intolerable decision uncertainty;  

• Detect the presence of spatial patterning and determine whether that patterning is 
associated with known or suspected contaminant release, migration, or partitioning 
mechanisms; 

• Accurately estimate volumes of contaminated material to evaluate treatment and disposal 
options and predict remedial costs as early in the project as possible; and 

• Identify and evaluate exposure pathways. 
 
This data use category is normally applied in conjunction with a dynamic work strategy since the 
sampling and analytical methods and instruments used are for the most part real-time 
measurement devices.  
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Determination of When Data Fall into the CSM:Dirty Data Use Category  
 
There are a variety of mechanisms by which data fall into the CSM:dirty data use category. 
Generation of data suitable only for modeling higher contaminant concentrations can be 
deliberate or inadvertent.  
 

• Deliberate generation of data occurs when sample processing and analytical techniques 
are selected for the express purpose of rapidly processing high numbers of samples. 
Achieving higher data density is more useful at this stage of CSM development than 
having high analytical quality, which would be cost-prohibitive for the needed number of 
samples and slow turnaround would hamper real-time decision-making.  The systematic 
planning process determines that the type of uncertainty these data will manage in the 
given decision scenario can be adequately addressed with this less rigorous data set.  

 
• Inadvertent generation of CSM:dirty data sets occurs when a more rigorous data set 

(e.g., lower detection limits) was planned, but when the results came back, data quality 
ended up not being as “good” as the project team had expected.  Although analytical 
quality is not as good as planned, the data may still have some value.  Although it may be 
inadequate for more stringent data uses (such as demonstrating regulatory compliance or 
calculating risk), the data may still have utility for building confidence in the CSM.  In 
other words, data that must be rejected for a stringent data use may still be quite useful 
for a less stringent data use, so it need not be totally discarded. Under the Triad approach, 
building the CSM is a critical activity, and many data have some use for that purpose as 
long they are of known quality.  Reasons why CSM:dirty data may be inadvertently  

 generated (when better analytical quality was expected) include:  
 
 

1. Matrix interferences: Sample effects may degrade the performance of methods that 
were expected to produce more rigorous data.  An example is when a laboratory 
dilutes a sample extract to reduce interferences, but inadvertently raises all or some 
of the target analytes’ quantitation limits above their respective action levels.  

 
2. Errors in planning:  Project planners make the dangerous assumption that using a 

standardized analytical method will automatically guarantee adequate data quality. 
But no one noticed that the method was not really appropriate for all of the target 
analytes or for the intended data use.  For example, the planning team may not notice 
that the standard method has a quantitation limit set too high to establish “clean” for 
an analyte important to the project.  Not until the results come back from the 
laboratory does the data user realize that the standard method was not designed to 
meet this project’s needs.  Proper planning would have determined that an alternate 
or modified method was needed before resources were spent generating an 
inadequate data set.  

 
3. Operator error: The operator/analyst may err by not following the project’s standard 

operating procedures (SOPs) for sampling and analysis.  Alternatively, the operator 
may be following the SOPs, but fail to notice or report to management that the SOPs 
were poorly matched to the actual needs of project implementation.  Problems with 
SOPs should be brought to the project manager’s attention so that corrective action 
can be taken to avoid wasting resources on inappropriate data collection. 
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4. Instrumentation problems: Quality control may indicate that instrument, blank, or 
batch problems exist that unexpectedly limit the utility of data for intended purposes. 

  
 
The CSM:Clean Data Use Category – Data Effective for CSM Development in 
Situations with Lower Concentrations  
 
General Description 
 
This data-use category includes data of sufficient analytical quality to delineate areas where 
contaminant concentrations are generally lower than the regulatory limits (i.e., “clean” or 
“compliant” soil). The purpose of this data use category is to identify clean areas/volumes of the 
site, and refine the CSM to bound “clean” areas with confidence.  Commonly, the determining 
factor for the data use is whether quantitation limits are low enough.  But other aspects of data 
quality, such as freedom from interferences, bias, and precision may also be determining factors.  
Generally, a data set that is sufficient to model populations of clean matrix will also be reliable 
for modeling populations of more contaminated matrix, but there can be exceptions to this.  For 
example, a highly sensitive technique that works well on simpler, low concentration matrices may 
be subject to interference and produce false positive or false negative detections when challenged 
with a real world complex matrix with high concentrations of pollutants.  Site history and 
knowledge of likely interferences can be an important factor when assigning a data use category 
to a data set.   
 
The intention of the CSM:clean data use category is, like the CSM:dirty category, to use real time 
measurement systems to create the information that will drive a dynamic work strategy to cost-
effectively evolve the CSM.  Ideally, methods and instruments used in the previous category 
(CSM:dirty) work in concert with methods and instruments in this category (CSM:clean) to build  
 
a collaborative data set supporting a mature CSM delineating “clean” and “dirty” areas of the site.  
Thus, it is critical during the systematic planning process to develop the respective decision logic 
and rules that will guide the field team to use data generated by these two categories.  
 
Benefits of the CSM:Clean Data Use Category 
 
Although the data sets within the CSM:clean data use category are effective for identifying the 
location and boundaries of clean areas of the CSM, the data quality, from either a sampling or 
analytical standpoint, may not be sufficient for more rigorous data use (such as regulatory 
compliance leading to a decision of “No Further Action”).  This may stem from the use of 
techniques that are non-specific or are modifications of standard methods that have not yet been 
widely accepted.  For example, a technique may report contaminant groups or classes, but cannot 
supply the analyte-specific concentrations needed for many quantitative data uses.  Even if the 
results are analyte-specific, the degree of bias or imprecision in the data set may be known to 
exceed that needed for more stringent data uses.  Sometimes slight modifications are made to 
standard methods in order to increase sample through put.  Under current laboratory certification 
procedures, any method modifications may be unacceptable to the certifying authority, even if the 
analytical performance is unchanged or even improved.  Even when the scientific decision-
making value of the data remains unchanged, regulatory rejection of the data for risk or 
compliance uses may force the data to be restricted to CSM:clean and CSM:dirty uses only.  As 
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the cleanup industry evolves to focus on decision uncertainty management, we hope that such 
restrictions will be reconsidered in the interests of promoting efficient, effective investigations 
and cleanups. 
 
Despite these limitations, CSM:clean data sets are of great value to the project by: 
 

• Reducing the cost of generating high sampling densities;  
• Creating the real-time availability of results to support a dynamic work strategy; and 
• Serving to check performance of analytical methods generating CSM:dirty data and 

confirm CSM:dirty data.  
 

These data are effectively used to stratify contaminant populations for statistical purposes, or to 
locate and delineate areas/volumes requiring no further action.  As with all data used in a Triad 
project, they are data of known quality (i.e., the in-field QC establishes their adequacy to support 
data use).  Along with the CSM:dirty category, these data are generally used as collaborative data 
that manage sampling uncertainties (Exhibit 3). 
 
Determination of When Data Fall into the CSM:Clean Data Use Category 
 
Like the CSM:dirty category, CSM:clean data sets may be generated deliberately as part of the 
project plan, or inadvertently due to complications from matrix interferences, sampling 
uncertainties, human error, or instrument QC problems that compromise the usefulness of data 
originally intended to serve more rigorous applications. Data can be expected to fall into the 
CSM:clean data use category under the following conditions: 
 

• The analytical technique reports only compound class-specific (not analyte-specific) data. 
Or, if the technique reports analyte-specific results, results are reported qualitatively (i.e., 
greater or less than a certain value) or semi-quantitatively (i.e., as concentration ranges). 
Alternatively, quantitative results may have only limited utility because they are known 
to be significantly biased or imprecise due to sampling or analytical limitations.  Despite 
the analytical uncertainty, the data are entirely suitable for supporting constrained 
decisions because they are of known quality and detection limits are below appropriate 
action levels.  For example, non-detect or low-detect data may be highly predictive for an 
entire class of compounds to which the technique responds and lead to a high level of 
confidence to render a decision on cleanliness, despite some uncertainty about the actual 
concentration of specific analytes.  

 
• Data for one analyte can be used as a surrogate to indicate the presence and approximate 

concentration of another analyte(s) because there is a sufficiently strong predictable 
relationship between them at lower concentrations to confidently predict when matrix 
concentrations are not exceeding applicable action levels. 

 
• Data may also be relegated to this category if regulatory programs have 

certification/accreditation or other requirements that limit regulatory acceptance of data 
generated in the field or using non-traditional methods, even if the data would be 
considered acceptable for the intended use from a purely scientific standpoint.  
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The CSM:Compliance Data Use Category – Data Effective for Managing Analytical 
Uncertainty to Demonstrate Regulatory Compliance  
 
The compliance data-use category includes data sets that are effective for meeting regulatory site 
closure or compliance monitoring expectations for reporting limits, analyte-specificity, precision, 
bias, and certification/accreditation of the service provider.  These data sets “polish” the CSM by 
managing any lingering analytical uncertainty with respect to contaminant identity and low-level 
concentrations.  Normally these data are produced in strict adherence to a particular regulatory 
agency or group’s data quality and reporting requirements (e.g., data deliverables).  
 
Since the analytical techniques used to generate this type of data typically analyze very small 
sample supports (e.g., 1 to 10 grams of soil), uncertainty about the representativeness of the 
analytical sample may be very high.  To manage this, the dynamic work strategy will call for 
these samples to be selected as splits from samples that had been analyzed in the field as part of 
CSM-building.  The split samples are sent for collaborative analysis at a fixed laboratory or 
sophisticated mobile laboratory in order to generate the CSM:compliance data category.  Split 
sample results help build confidence that the larger data set of field analyses is being interpreted 
correctly.  Split samples also help to further refine or “polish” the CSM (which had been 
developed at a coarser scale from the CSM:dirty and CSM:clean data) with analyte-specific data 
and lower detection limits that can support decisions about regulatory compliance.  
 
The fraction and selection of samples to be split for collaborative analysis should be guided by 
several considerations.  If data use involves decision-making at an action level, a large fraction of 
the split samples should be focused on managing decision uncertainty around that action level.  If 
the planned data use warrants it, split samples may also be used to develop the appropriate 
statistical regressions between field and fixed data, in which case split samples need to be taken 
across the entire concentration range covered by the intended regression.  Either case requires 
knowing the approximate concentration range of the sample before selecting it for split-sample 
analysis.  Therefore, random selection of an arbitrary percentage of samples is undesirable, 
because it is likely to produce a data set with a high number of non-detects or other non-
informative results useless for data comparison and statistical purposes (ITRC, 2003).  So 
samples for the CSM:compliance data use category should be collected after the CSM has 
evolved sufficiently to guide the selection of appropriate locations and number of samples to be 
targeted with the more expensive analysis.  With some advance planning on sample volume and 
storage, samples can be field tested and archived for later splitting as necessary.  For example, 
non-destructive testing (such as XRF technology on homogenized samples) allows for easy 
archiving of the sample cups for future submission to additional laboratory analysis, while 
avoiding the problems created by splitting a non-homogenized sample.  
 
Compliance data are distinguished from risk calculation data because the demands on quantitation 
limits, data precision and bias can be more stringent for quantitative risk calculations than for 
determining compliance against a regulatory threshold. 
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The CSM:Risk-Calc Data Use Category – Data Effective for Managing Analytical 
Uncertainty to Support Quantitative Risk Calculations  
 
The risk-calc data use category is the most stringent from both a scientific and regulatory 
standpoint.  The policy implications of risk assessments generally demand that any applicable 
laboratory/operator certification requirements be met.  Quantitative risk assessment requires low 
quantitation limits (to avoid a biased assessment when significant data points are non-detect) and 
analyte-specificity.  In addition, site-wide or exposure-unit representativeness of the data is 
essential to develop a true picture of risk for the site – particularly in the case of probabilistic risk 
assessments.  Biased data, such from AOC driven sampling regimes may preclude site-wide (i.e., 
the entire site is designated as the exposure unit) risk assessments.  A simple example is a site 
where only a portion is contaminated - say 50 percent.  If the data set were comprised solely of 
samples taken from the AOC portion of the site, the risk assessment could be interpreted such that 
the risk is overestimated by a factor of two. 
 
To minimize uncertainty in risk assessment, it is important to have low bias and good precision in 
the data set used to calculate contaminant exposure.  Bias and precision in data are not just a 
function of the bias and precision of the analytical technique, but are heavily influenced by 
various sources of sampling-related heterogeneity.  For risk assessment data, it is of utmost 
importance for both sampling and analytical uncertainties to be strictly controlled.  Although the 
demands on data rigor make it desirable to obtain the best analytical quality that is technically 
feasible, the subsamples actually analyzed tend to be quite small.  So imprecision in the data set 
will be high unless sampling variables are strongly managed at both macro (sampling locations) 
and micro (sample preparation) levels.  A mature CSM that captures any significant contaminant 
patterning (i.e., adjacent, but distinctly different contaminant populations) and the variability 
within those populations should be the basis for stratifying populations, selecting sample numbers 
and locations, and choosing sample collection and handling procedures.  Both between- (i.e., 
macro) and within-sample heterogeneity (i.e., micro) should be measured and controlled so that 
these expensive data points, produced in strict compliance with standard method QA/QC 
requirements, certifications and data reporting deliverables, will have maximal effectiveness for 
the risk-calc data use.  
 
The more stringent data uses categories (compliance and risk-calc) are supported when the 
appropriate sampling and analytical techniques are selected and implemented with no 
confounding analytical interferences, operator error, cross-contamination, or QC problems that 
could cause the data to be flagged/qualified.  These data sets have historically been generated in 
the controlled environment of a sophisticated field or fixed laboratory that can ensure proper 
equipment maintenance, calibration, sample processing and storage.  At this point in time this 
generalization is still largely true, but exceptions are growing as laboratory instrumentation is 
miniaturized and made more rugged to tolerate less controlled field deployment.  One such 
example is field-portable gas chromatography/mass spectrometry (GC/MS) instruments equipped 
with standardized sample preparation modules. 
 
Typically, ex situ samples are required because of the need to control sample support and particle 
size when generating concentration data that can be appropriately compared to regulatory action 
levels or risk-derived decision thresholds.  Extreme caution must be always be exercised 
whenever very small subsample supports are used.  Strict control over sample homogenization, 
preparation, and subsampling procedures are required in order to reduce subsample variability, 
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produce data that is comparable across different analytical techniques, and ensure that the correct 
matrix population has been targeted for representative analysis (USEPA, 2003). 
 
Since it is generally more expensive to generate data suitable for the more stringent analytical 
uses, samples should be carefully selected to achieve the highest degree of information return for 
the money being spent.  Samples should be of known representativeness, i.e., the mature CSM 
and the decision framework should establish the appropriate sample location and population to be 
targeted for analysis.  Because these data sets are costly, they are reserved for managing 
analytical uncertainty that cannot be managed in less expensive ways.  Control over sampling 
uncertainty and development of the CSM is performed (when at all possible) using less expensive 
options that support high data density and delineation of the populations to be targeted for risk or 
remedial decisions.  Once those populations are defined, samples representative of those target 
populations may be collected for the more expensive procedures used to create an unrestricted 
and unlimited land-use driven decision-making data set.  This concept is illustrated in Exhibit 4, 
where the bulk of site sampling used to rapidly grow and mature the CSM is within the 
CSM:dirty and CSM:clean data use categories.  As the confidence in the CSM improves, the 
ability to select those samples that require more stringent analytical rigor is driven by the 
objectives of the project and the mature CSM.  Both CSM:compliance and CSM:risk-calc data 
sets should be designed to manage whatever relevant analytical uncertainties remain after target 
contaminant populations have been defined, as was indicated in Exhibit 3. 
 

 
 
Exhibit 4.  Generalized Collaborative Data Management Using Data Use Categories 
 
 
 
SUMMARY 
 
Judicious blending of different data-use categories maximizes the return on investment in a site 
characterization project because sampling uncertainties, and other important variables that could 
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produce misleading information, are identified and controlled.  A carefully designed combination 
of sampling and analytical techniques manages the fundamental mismatch between the tiny 
volumes analyzed by traditional sampling and analysis programs and the very large volume of 
material to which analytical results are extrapolated.  When dynamic work strategies are used in 
conjunction with collaborative data management systems, sampling designs can provide greater 
coverage, striking a balance between the need to delineate known or expected areas of 
contamination for more precise estimates of treatment volumes vs. the need to adequately assess 
the rest of the site for the presence of unanticipated contamination and to confirm areas where no 
further action is required. 
 
High-density sampling targeted to areas of decision uncertainty is essential to account for site 
heterogeneity and for understanding contaminant distributions at scales ranging from macro 
(between samples) to micro (within a single sample) for both time and space. Without this 
understanding, the representativeness of isolated 1- or 10-gram analytical samples is unknown.  
When interpreting data results, the data user does well to ask, Is there any confidence that the 
analytical result from a 1-gram sample truly represents the average concentration in the sample 
jar?  Is it legitimate to extrapolate that concentration result to represent the average concentration 
for the 500 cubic yards of soil in the field grid from which that tiny sample was taken?  When the 
representativeness of data is unknown, the data quality is unknown, no matter how much 
analytical quality control was performed.  
 
Cost-effective and efficient site remediation and scientifically defensible decisions require 
accurate site characterization.  The CSM is at the center of site characterization.  It is the hub that 
guides iterative rounds of sampling to detect and bound spatial patterns that indicate sources, 
exposure pathways, and hotspots.  The iterations required to refine a CSM are most cost-effective 
when performed in real-time.  Therefore, data used to test and refine the CSM must be available 
in real-time.  A collaborative data management system, when used by a skilled and experienced 
field team, is the only procedure currently available for collecting enough site information to 
mature the CSM in a timely manner.  This paper proposes a framework to structure data quality in 
a way that supports scientifically defensible decisions and efficient projects, while also being 
used to meet regulatory oversight objectives. 
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