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ABSTRACT 
 
Many individual scientific and technical disciplines contribute to the multidisciplinary field of 
remediation science and practice. Because of the relative youth of this enterprise, disciplinary 
interests sometimes compete and conflict with the primary goal of achieving protective, cost-
effective, efficient projects. Convergence of viewpoints toward a more mature, common vision is 
needed. In addition, cleanup programs are changing under the influence of Brownfields 
initiatives and the needs of environmental insurance underwriters. Investigations and cleanups 
increasingly need to be affordable, yet transparent and defensible. Disciplinary goals and 
terminology need to better reflect real-world site conditions while being more supportive of 
project needs. Yet, technical considerations alone will not ensure project success: better 
integration of human factors into project management is also required. The Triad approach is 
well placed to catalyze maturation of the remediation field because it emphasizes 1) a central 
theme of managing decision uncertainty, 2) unambiguous technical communications, 3) shortened 
project lifecycles and multidisciplinary interactions that rapidly build professional expertise, and 
provide feedback to test and perfect programmatic and field practices, and 4) concepts from 
“softer” sciences (such as economics, cognitive psychology, and decision theory) to capture 
important human factors. Triad pushes the cleanup industry toward an integrated, practical, 
second-generation paradigm that can successfully manage the complexities of today’s cleanup 
projects. 
 
 
INTRODUCTION 
 
This article will explore how the Triad approach can spur evolution of remediation science and 
practice from a patchwork of weakly associated disciplines toward a fully integrated 
multidisciplinary field of scientific inquiry and engineering practice grounded in negotiated, 
cooperative decision-making. The Triad approach was envisioned as a self-correcting paradigm 
that can keep pace with advancing science and technology as they interact with evolving societal 
demands. To meet this ambitious goal, Triad is built on a central, powerful, organizing principle: 
the explicit management of decision uncertainty. Triad was articulated by a team of effective, 
experienced practitioners with a proven track record of successfully managing complex sites. 
Their lessons-learned and expertise are captured in the workings of the Triad approach. Triad 
crystallizes this expertise into a second-generation paradigm of integrated practices that can 
benefit the consumers of site remediation services. Triad also promotes deeper collaboration 
among field practitioners, regulatory policy makers, technology developers, and academia as it 
encourages open communication. It feeds on process and technology improvements flowing from 
both the public and private sectors.  
 
RAMIFICATIONS OF UNCERTAINTY MANAGEMENT 
 
Building Triad on the unifying concept of uncertainty management has many ramifications at 
project and program levels. One ramification is reliance on a flexible, graded approach that can 
be tailored to meet each project’s specific technical needs. A second implication is Triad’s 
openness to advancing science and technology. Triad welcomes any and all tools that offer more 
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accurate and complete understanding of contaminant distribution and behavior, since these are 
key factors determining the risk of exposure and cost-effective mechanisms for risk management. 
Another ramification is that Triad’s structure allows it to automatically adapt even though the 
nature of environmentally-related decisions may change in response to evolving social, policy, or 
regulatory initiatives. For example, Brownfield initiatives shift focus from legal liability to 
economic revitalization, yet the basic need remains for all decisions (whether engineering, legal, 
or economic) to be protective, transparent, and technically defensible.  
 
Explicit management of decision uncertainty serves the goal of defensible, transparent science in 
site cleanups. The hallmark of scientific inquiry is identifying and controlling (to the extent 
possible) the variables that could confound the interpretation of data and lead to faulty 
conclusions. Like all science-based strategies, Triad continually tests assumptions, even long-
standing ones, for validity in the face of new information. This is what makes science a self-
correcting paradigm. Uncertainty management provides a conduit for feedback between field 
practice and program policy. Programmatic policies about data quality and statistics developed 
back in the 1980s may be inadequate now that there is better understanding of the physical 
mechanisms governing heterogeneous contaminant concentrations in environmental media 
(Crumbling, 2002; ITRC, 2003). Program-level policies and procedures that ignore major sources 
of scientific uncertainty at the project level abet project inefficiency. Sweeping significant 
uncertainties under the rug does not cause them to go away. They lurk below awareness to trip up 
the unwary and induce faulty conclusions about risk or remedial design. Better communication 
between practitioners and policy makers about what really works and what does not in technical 
practice is needed.  
 
Project success also depends on managing non-science uncertainties. Triad’s broad interpretation 
of “decision uncertainty” creates ample space within Triad’s first element (systematic planning) 
to accommodate the many non-science issues that impact site cleanup, such as uncertainty about 
budgets and contracts, stakeholder interests and fears, legal concerns, and regulatory 
interpretation. All these uncertainties affect how a project’s end goals are framed, shaping the 
decisions that must be made to bring the site to closure and reuse. Seasoned Triad practitioners 
recognize that the people-oriented aspects of a project are as important to success as the scientific 
and technical. People issues can make or break a project.  
 
Starting field work before there is consensus about the desired project outcome is one reason why 
repeated field mobilizations are standard fare for conventional projects. Making room in up-front 
project planning to confront regulatory and community concerns head-on is a major reason why 
Triad projects move rapidly and efficiently during field implementation. How long it takes to get 
to the field, however, depends on the willingness of those involved to work toward consensus 
during planning. For some projects, planning is relatively quick and simple because the issues are 
clear-cut and participants are few or are motivated to reach consensus. For other projects, just 
articulating what the project goals are (much less a workable strategy to reach them) can be a 
difficult and lengthy process, with divergent stakeholder interests pulling in opposite directions. 
Triad cannot miraculously change participants’ basic motivations. It can, however, create a forum 
where all concerns and suggestions are openly vetted, valued, and factored into the decision 
process. Honest communications, transparency and accountability can sometimes work wonders 
for contentious projects. As difficult as Triad planning can sometimes be, it is still much more 
cost-effective to resolve conflict and uncertainty about project goals through face-to-face 
meetings, rather than hoping to satisfy stakeholders through a succession of trial-and-error work 
plans and repeat mobilizations (Crumbling et al, 2004).  
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Triad’s core principle catalyzes better projects because Triad practitioners use decision 
uncertainty management to bring order to an otherwise chaotic list of seemingly unrelated or 
contradictory activities and issues. Topics ranging from data quality, remedial optimization and 
long-term monitoring to stakeholder involvement, insurance underwriting, legal defensibility and 
procurement can be aligned and harmonized when they are subordinated to serving the same 
“master,” i.e., achieving confidence in the key decisions that determine the project outcome. The 
same harmonization can be applied at the program level to ask whether established procedures are 
serving the overarching goal of decision confidence.  
 
The Triad approach can benefit the cleanup community in yet another way. Triad and its core 
organizing principle can help catalyze the emergence of a fully integrated site management 
discipline from the loose confederation of disciplines contributing to environmental investigation 
and cleanup. The multidisciplinary heritage of remediation science is rich and diverse. Each 
discipline makes a vital, unique contribution. But a unified scientific discipline needs a common 
vision and a common language in order to progress and thrive. Right now remediation science has 
neither. Each distinct discipline has retained its own narrow view of what constitutes good 
practice in its particular realm. Each discipline retains unique jargon despite the 
miscommunications it causes. Independent pursuit of parochial interests has worked against the 
overarching goal of achieving quality at the project level, where science-based decisions about 
exposure and remediation must be made at the intersection of social concerns and economic 
interests. In hope of sparking a dialogue leading to greater harmonization of multi-disciplinary 
efforts, two disciplines, analytical chemistry and statistics will be used to illustrate how narrow 
disciplinary frameworks work against project efficiency and defensibility. Then the article will 
explore how decision theory aspects of the Triad approach deepen productive collaboration 
between disciplines to promote continual improvement and professional development. 
 
ANALYTICAL CHEMISTRY  
 
From the standpoint of analytical chemistry, data quality for chemical pollutant analyses is a 
function of analytical rigor and instrumentation, analytical quality control (QC), reporting, and 
review. This thinking permeated the remediation arena in the earliest days of site investigation 
and has persisted to this time. Throughout the environmental field, the phrase “data quality” is 
used universally when only analytical quality is being evaluated. The assumption is that the better 
the quality of the analysis (i.e., precise, unbiased, fully documented laboratory procedures), the 
better the data quality. Yet the term “data quality” is also identified intuitively and explicitly with 
the usability of data to make decisions (USEPA, 2000b). Because language has equated analytical 
quality with data quality, the working model is “good quality analysis  =  good quality data = 
good decisions.” 
 
Although seductive in its simplicity, the problem is that this model doesn’t work very well for 
contaminated sites. Good quality analysis routinely provides data that leads to erroneous 
conclusions about the nature and extent of contamination, to the detriment of project 
defensibility, efficiency, and cost. Why? Although there are several mechanisms by which this 
happens, the shortest explanation is that contaminated media are heterogeneous at both larger 
(macro, between samples across the site, at the scale of project decisions) and smaller (micro, 
within a single potential sample, at the scale of sample analysis) spatial scales. It is not unusual 
for both types of heterogeneity to be severe (EPA, 2003; ITRC, 2003). Since data are generated 
from heterogeneous samples, the effect of sampling variability must be taken into account when 
assessing data quality (i.e., the ability to trust that the data lead to correct decisions). Sampling 
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variability can cause soil or groundwater samples from the “same” location or well to provide 
radically different results as a function solely of how sample collection and processing were 
performed. This effect is distinct from analytical problems caused by matrix interferences, which 
can also occur. Although data variability due to sampling varies widely with matrix, analyte, and 
estimation method, it usually overwhelms analytical variability in site data sets. Rigorous, 
quantitative analyses are important and valuable; however, accurate laboratory analysis by itself 
is not sufficient to cultivate efficient projects. Accurate analyses on the tiny samples actually 
extracted for laboratory analysis do not guarantee good data quality if there is no confidence that 
the results can be reliably extrapolated back to the volume of site matrix being targeted by project 
decisions. 
 
Many bench chemists view detecting and controlling the impact of heterogeneity on data quality 
as someone else’s problem. But the pervasiveness of sampling variability makes it everyone’s 
problem. Everyone, from policy makers to project managers to field technicians, needs to be 
educated about how heterogeneity sabotages data quality (and project success) despite regulatory 
efforts to ensure analytical quality. By colluding with the “analytical quality = data quality” 
fallacy, chemists have allowed data users to remain ignorant of, and evade responsibility for, 
other components of data quality. While significant resources are channeled into extensive 
measures to oversee select portions of analytical quality, much larger sources of data variability 
are neglected. Ironically, the very tools that can cost-effectively detect and manage the impacts of 
sampling uncertainty (such as inexpensive, high density, rapid turn-around field and lab 
techniques) have been discouraged by regulators and many bench chemists. Entrenched 
terminology disparages any analysis done in the field as “field screening” (Crumbling et al, 
2003). For example, field-portable gas chromatography-mass spectrometry (GC-MS) results with 
a full quality control package demonstrating performance equivalent to or better than fixed 
laboratory data have been rejected by regulators who identify the technique as “field screening.” 
The term field screening implies something less than adequate for making decisions. The reality 
is since the method performance is equivalent and more samples are measured in less time with 
the additional benefit of sample contaminant stability, the information better represents the site 
condition. This attitude toward field measurements has retarded practitioners’ and service 
providers’ opportunities to learn how to use and deploy these techniques effectively. 
 
Paradoxically, bench chemists bemoan data users’ unfair criticism of the lab when data “doesn’t 
make sense” because of sampling variability that was out of their control. Chemists can correct 
this by changing their terminology so it reflects the project perspective and educates data users 
about data uncertainty. Chemists should stop using the broader term “data quality” and replace it 
with the more precise term “analytical quality,” since that is almost always what is actually being 
considered. “Data quality” should be restricted to usage where both analytical and sampling 
uncertainties have been controlled. Control over sampling uncertainty is as much or more of a 
contributor to data quality as analytical control. Even perfect analytical quality (at the scale of 
analysis) should be labeled as “screening quality data” if uncontrolled sampling uncertainty 
compromises confident extrapolation of results to larger volumes of matrix (at the scale of the 
decision). Chemists should shun the custom of analyzing a single soil subsample from a jar and 
reporting a result to one or two decimal places, when it is well known that other subsample from 
the same specimen jar can produce very different results because of micro heterogeneity (ITRC, 
2003). Terminology usage and reporting conventions allows data users to remain unaware that 
“data” validation/verification procedures do little to assess data uncertainty. Data users and 
project planning teams cannot learn to avoid data errors until the community escapes from the 
“analytical quality = data quality” language trap. 
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STATISTICS 
 
The first-generation model EPA chose to use for assessing decision confidence for contaminated 
sites was classical statistics. Since classical statistics are still being promoted as a quantifiable, 
objective means to demonstrate decision confidence, it is important to consider: 

1) Is classical statistics the proper statistical model for routine application for contaminated 
site projects? 

2) Will promoting statistical software packages to inadequately trained staff for planning 
sampling designs and evaluating data help or hurt the cleanup community? 

 
Is Classical Statistics the Appropriate Model? 
 
The Achilles heel of any statistics application is failure to define the population of interest and 
demonstrate that data were actually drawn from that population. Good and Hardin (2003) warn 
that “extrapolation from a sample or samples to a larger incompletely examined population must 
entail a leap of faith.” For lack of a better model, EPA has long made “a leap of faith” in 
recommending classical statistical algorithms for planning sampling and for evaluating 
contaminant concentration results for hazardous waste sites (USEPA, 2000a & 2000b). These 
recommendations encourage practitioners to think there is only a single population enclosed 
within the site boundaries. Yet the physical mechanisms of contaminant release and migration 
guarantee that site boundaries enclose two or more different contaminant populations whose 
distribution patterns have strong spatial correlations. Physical reality at most sites violates the 
model assumptions of classical statistics, and mismatches between the scale of decision-making 
and the scale of analysis are not addressed.  
 
Disturbingly, our experience with the cleanup community has provided ample evidence that 
project staff routinely use statistical tools without awareness of model assumptions. It is rare to 
find that staff entrusted with statistical analysis actually understand the concept of “population” 
and how to use it to improve project efficiency. The repercussions of using unrealistic values as 
inputs to classical statistics algorithms to prepare sampling plans (e.g., the population standard 
deviation and setting the “gray region” as defined by EPA guidance) are seldom appreciated. 
Although recognition is growing that geostatistics is a more appropriate statistical model for 
spatially patterned contamination, classical statistical equations are tightly embedded in practice 
and procedure. There are good reasons to ask whether classical statistics should continue to be 
encouraged as the primary statistical paradigm for dealing with contaminated sites. 
 
1) The history of this paradigm is that several site characterization mobilization cycles are 
required to answer project questions, and even then, the characterization is often discovered later 
in the project to be flawed, requiring it to be done yet again. Could it be that classical statistics is 
simply not the right tool if we expect projects get the “right answer” the first time? 
 
Working within the framework of the time, EPA’s Data Quality Objectives (DQO) process was 
designed to reflect the conventional phased approach of fixed laboratory analysis with multiple 
site mobilization phases. The DQO process was envisioned as a looping of multiple study events, 
as illustrated in Exhibit 1 (USEPA, 2000b). Although there is no absolute requirement that these 
study events be separated in time, the expectation was that multiple mobilizations would 
iteratively hone in on the right answer. This was a reasonable approach when tools, experience, 
and knowledge were limited, yet social priorities devoted large budgets to site management. The 
statistical DQO model was not designed to support site characterization that gets the “right 
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answer” in only one or two mobilizations because cleanup programs did not have that 
expectation—the theory and technology to do so did not exist at that time. 
 
Times and circumstances have changed. The phased mobilization and decision making model is 
no longer viable in today’s budget climate. This is especially true for Brownfields projects, which 
have neither the funding nor time to support multiple attempts at contaminant characterization. 
Once the budget allotted for characterization is expended, project decisions will often be made 
whether data support confident decisions or not. Unfortunately, a “best guess” based on 
incomplete or misleading data sets risks project overruns or outright failure during remediation or 
redevelopment. Today’s leaner budgets and time-critical reuse scenarios require that iterations to 
find and fill data gaps be performed through real-time in-field decision-making if the “right 
answer” is to be obtained cost-effectively. Fortunately, technical advances make that option 
possible. However, regulators and practitioners must be willing to move beyond first-generation 
models and invest in the changes needed to adopt another model. Although nothing in DQO 
guidance inherently prohibits it, the environmental community has shown no inclination to use 
the DQO process as a springboard to a second-generation paradigm. To the contrary, many 
claiming to use the traditional DQO process seem reluctant to break away from their comfort 
zone, even while they complain of the current framework’s inefficiencies. 
 

 
Exhibit 1: Figure 0-4 reproduced from page 0-8 of EPA QA/G-4 guidance, entitled “Repeated 
Application of the DQO Process throughout the Life Cycle of a Project” (USEPA, 2000b). 
 
 
2) We should not be surprised that classical statistical tools require multiple iterations to get the 
right answer since fundamental assumptions of the model are incompatible with real conditions at 
contaminated sites, as described below. 
 
• Statistical models assume that the user has established the validity of the inputs before using 

them in the model. “Fancy statistical methods will not rescue garbage data.” (R.J. Carroll, 
2001 in Good & Hardin, 2003). The model assumes that data inputs are fully representative 
of the population of interest, i.e., that analytical or sampling variability has been controlled. 
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But, as discussed earlier in this article, that is not a safe assumption for environmental data. 
The concept of population for soil or groundwater is somewhat different from the traditional 
statistical concept of population, which entails grouping individuals with similar 
characteristics (like a population of maple trees). Extending classical statistics to populations 
without discrete, clearly delimited individual or members introduces important theoretical 
and practical issues. Since soil and water do not exist as obvious collections of discrete 
individuals, the data user is required to define the population of interest before sampling 
occurs. Unless sample collection and analysis have been carefully planned to target the 
population of interest to the decision, traditional sampling and analysis procedures can 
unknowingly mix different populations together to create misleading intermediate results (an 
important problem in groundwater monitoring) or can unwittingly target non-representative 
populations (such as an inappropriate particle size during laboratory subsampling of soil). 
Undue trust in statistics without a healthy skepticism about the validity of the inputs risks 
faulty conclusions. 

 
• Classical statistical equations are based on the assumption that each data point is independent. 

In other words, a fundamental assumption is that there is no spatial relationship between the 
data points. Another way to phrase this is that the data are expected to come from a single, 
identically distributed population. That is why classical statistic equations do not consider the 
actual area of the site or the volume of matrix when predicting the number of samples to be 
collected. To classical statistics, the area or volume being sampled is irrelevant, therefore it 
will tell you to take the same number of samples whether you are sampling 1 acre, 100 acres, 
or 1000 acres. Obviously, no one believes this. The reason that we know that disposal 
practices and contaminant migration create spatial patterns, so our ability to extrapolate 
results across large areas is necessarily limited. The degree of limitation is related to the 
representativeness of sample results and is determined in Triad practice through the process 
of refining the conceptual site model and managing the relationship between decision 
uncertainty and data uncertainty (ITRC, 2003; Crumbling, 2004). Most project decisions 
related to assessing exposure pathways and designing cost-effective remedial systems are 
dependent on knowing the spatial distribution of contaminants. Those decisions cannot be 
properly made if supporting data were produced through a sampling strategy that assumed no 
spatial relationship existed. 

 
o Note that the assumption of a single population may hold true for select scenarios: 1) 

sites that were never contaminated; 2) sites that have been successfully cleaned up; 3) 
sites that were contaminated through some unusual mechanism that uniformly 
covered the entire site; and 4) stratification or blocking strategies that allow sections 
of a site or specified volumes of matrix to be defined as a single population because 
there is reason to believe contamination is reasonably homogeneous within the 
specified boundaries of that population.  

 
• Algorithms to support sampling design development presume a level of site understanding 

(e.g., predicting the variability in the future data set) that usually does not exist. This requires 
that guesses or professional judgment be used as inputs to the equations. Our experience with 
users of statistical sampling design tools is that they consistently underestimate the degree of 
real-world variability. The concept of the gray region is not understood at all. Sampling 
programs that attempt to treat a large site as a statistical whole invariably over-sample in 
some areas, but under-sample in others, creating an inefficient data set with gaps that trigger 
additional mobilizations. 
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• Many applications of classical statistics are structured to assume that the project decision 
rests on a comparison between the population mean and a regulatory threshold. For several 
reasons this assumption is frequently violated for contaminated site projects: 

 
o Even for surface soil contamination (the scenario most often depicted in guidance 

and training examples), current regulatory compliance decisions are seldom based on 
area-wide averages. Regulatory thresholds are almost always treated by regulators as 
“never-to-exceed” levels. Even if the area-wide estimate of the average [the upper 
confidence limit on the mean (UCL) is most commonly used] is below the regulatory 
limit, regulators will commonly insist that data points exceeding the threshold be 
investigated by another round of sampling. Regulators intuitively recognize that 
significant masses of contamination or migration pathways can be missed by widely 
spaced sampling designs. Even one “hit” above the limit could represent the “tip of 
the iceberg” if the original sampling plan was not dense enough to control for spatial 
heterogeneity or did not delineate high hits to determine extent. However, treating 
regulatory thresholds as “never-to-exceed” levels creates its own host of problems 
from the standpoint of scientific and regulatory defensibility.  

 
o As noted before, a data set representative of a site-wide (or large area-wide) average 

is not useful for making the many project decisions that depend on detecting 
concentration gradients or spatial patterns. Examples of these decisions include 
detecting small cross-section/high flux migration/exposure pathways, finding 
sources, selecting and designing an efficient remedy, projecting redevelopment costs 
& schedules, and pricing environmental insurance policies. 

 
o Traditional project planning seldom describes the relationship between contaminant 

populations and the intended project decisions, therefore sample collection and 
processing is not planned to be representative of the population targeted by the 
intended decision. The result is haphazard sampling and sample processing that 
easily produces a data set unknowingly drawn from different populations. The mean 
of a data set which unintentionally and unknowingly mixes different populations in 
the data set is unreliable as a basis for decisions using the mean.  

 
• Classical statistics itself provides no mechanism for considering information sources other 

than chemistry results for pollutant concentrations. Users typical employ statistics as if the 
chemical data set is expected to stand alone to support decisions. As already discussed, that is 
a risky proposition when target populations are poorly defined and sampling variability is 
uncontrolled, making sample representativeness highly uncertain. Other data sources (e.g., 
geophysical survey results, stratigraphic data) and the site history are crucial to establish the 
physical context in which chemical data should be interpreted. Innovative algorithms based 
on Bayesian statistics have been used to allow the site’s physical context and other 
knowledge to be included quantitatively when estimating decision confidence (USDOE, 
2001). 

 
• Chemists and statisticians sometimes recommend that data users employ statistical outlier 

tests to tidy up data sets and justify discarding inconvenient data points. This practice can 
actually work against project success. Chemical data sets should not be treated as stand-alone 
systems. Chemical data reflects the physical nature of a site, a nature which is governed by 
interactions that are best understood within the context of other technical disciplines such as 
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geology or soil science. Discarding data based on a statistical model may be throwing away 
valuable clues to understanding the site. Results that appear to be outliers may be important 
clues that the site does not conform to the statistical assumption of a single population. 
Outliers can also be tell-tail signs that the working conceptual site model (CSM) is not 
correct, that target populations have not been correctly identified, or that sampling 
uncertainties are inadequately controlled. Rogue results are warnings signal that, if heeded, 
allow problems to be detected early so corrective actions can be taken, avoiding more serious 
and costly difficulties later in the project. Outliers should be discarded only when they can be 
traced to a blunder or have been replaced with more solid information.  

 
The disconnect between the assumptions inherent to classical statistics and the realities of 
contaminated site projects should be a cause for concern among statisticians and project 
managers. Although it is possible to apply classical statistics in ways that preserve the integrity of 
the assumptions and allow the tool to be used defensibly, our observations are that most 
environmental users are unaware even that statistical pitfalls exist, much less how to avoid them. 
 
The Perils of Using Statistical Software as a Black-Box 
 
It is vital that the environmental community heed the warnings of statistical experts: “[S]tatistical 
software will no more make one a statistician than would a scalpel turn one into a neurosurgeon. 
Allowing these tools to do our thinking for us is a sure recipe for disaster.” “Statistical procedures 
for hypothesis testing, estimation, and model building…should never be quoted as the sole basis 
for making a decision…the most serious source of error lies in letting statistics make decisions 
for you” (Good & Hardin, 2003). Within the environmental community statistically-based 
programs are frequently used as "black-boxes"; that is, inadequately trained staff run software and 
accept its output without 1) understanding what the model assumptions are, 2) without 
establishing whether model assumptions are valid for the specific application, and/or 3) without 
determining whether project-specific inputs to the program are justified. For example, inputs to 
statistical software programs to calculate sample numbers (such as values used for the gray region 
and the population standard deviation) are often selected without regard for actual site conditions. 
Since these inputs determine the model's output (how many samples are needed to support 
decision-making), using inputs that are qualitative estimates or guesses at best, or factitious 
values selected to achieve a pre-determined outcome at worst, produces equally uncertain or 
fictitious outputs. But the sensitivity of statistical models to the validity of inputs is too often 
downplayed in the policy arena, luring managers and staff into a false sense of security. Passing 
guesses through a mathematical algorithm does not make the output more “scientific” and 
“quantitative,”despite sweeping claims that using these statistical methods will “design the data 
collection plan that will most efficiently control the probability of making an incorrect decision” 
(USEPA, 2000a). 
 
This warning applies equally to classical, geostatistical, and geoBayesian algorithms. When 
human statisticians were used to design sampling plans that considered the highly variable nature 
of site contamination, the number of samples they recommended routinely exceeded the 
characterization budget. This was a clue that a purely statistical approach to sampling design was 
inadequate as a design model, but viable alternatives were not available. So project managers did 
the best they could within budget constraints. They ignored the statistical calculations in favor of 
calculating how many samples the budget could support and that became the basis for sampling 
design. If statistical software programs are used, the same problem (conventional statistically-
based sampling designs are too expensive to implement) should arise, since the software runs the 
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same equations that the statistician did. What black-boxes offer, however, is the ability for a non-
statistician to interactively run the algorithm until the set of input values is found that predicts the 
number of samples that matches the budget. Although testing a proposed plan against the budget 
is a legitimate activity, selecting unrealistic inputs defeats the purpose of using statistics, which is 
to increase the objectivity and defensibility of the plan. Unrealistic proposed sampling designs 
have been defended simply because a software package was used; the rationale for choice of 
inputs is not discussed. Case managers providing oversight seldom have the training to detect 
invalid statistical inputs. Reliance on black-box statistics will keep the environmental community 
trapped in the paradigm of multiple mobilizations that resample until the budget runs out, settling 
for an incomplete CSM that sabotages any chance for efficient remedial and monitoring designs. 
 
TRIAD AS A CATALYST FOR CHANGE 
 
The environmental community needs to refine its thinking about data quality and statistics to 
match our current understanding of contaminant heterogeneity and its impacts on decision 
confidence. Better site characterization would result, producing a much more accurate picture of 
site contamination. Projects would be more successful, and remediation science would be put on a 
more rigorous technical foundation. Triad provides a framework to break away from first-
generation practices toward a new paradigm that embraces the tools and strategies proven to give 
much better project outcomes because they manage heterogeneity. The Triad approach explicitly 
recognizes that physical mechanisms of contaminant release and migration create patterns of 
contaminant distributions, incorporating them into a conceptual site model (CSM) that segregates 
the site into populations supportive of protective, yet cost-effective, project decisions. Populations 
can be defined at scales matched to support exposure decisions, risk management strategies, and 
efficient treatment design. Sampling designs are scaled to match the population targeted by the 
intended decisions. The availability of affordable, rapid, high-density data collection options 
often allows Triad projects to generate sampling densities that characterize and delineate 
populations directly, with less need for uncertain statistical extrapolation. Triad is organized 
around a form of “hypothesis testing” based in physical reality, rather than in statistical models. 
Triad uses a preliminary CSM as the initial hypothesis of site contamination and its relationship 
with its physical surroundings. The accuracy of that physical model is progressively tested and 
refined by real-time iterations of data collection and CSM updates until there is confidence 
(which may, as the situation warrants, be expressed statistically or through weight of evidence) 
that the CSM is accurate enough to support correct decisions. To do this, Triad exploits all 
available tools, including statistics, in a manner consistent with the need and the tool. There are 
enough technology options now that the need can drive tool selection, instead of the project being 
designed around a few available tools. 
 
The language of site professionals needs to evolve past the assumptions of the first-generation 
model and support cross-discipline communication about the physical nature of contaminated 
sites. As the interagency Triad workgroup prepared the Triad Resource Center website, we 
discovered we needed to use language more precisely to communicate concepts about data 
quality and sources of data and decision uncertainty. Common phrases, such as “confirmation 
sampling,” “false positive/false negative,” “DQOs,” and “source area” routinely caused confusion 
because they meant different things to different people in different contexts. We found we needed 
to integrate theoretical and practical considerations when defining terms unambiguously. These 
definitions are captured in the Triad Resource Center’s glossary (www.triadcentral.org). 
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When site cleanup began emerging as a discipline, project managers, often engineers, were 
expected to serve as the integration hub for the disparate disciplines that contribute to cleanup 
projects. But this was unrealistic. Engineers are seldom cross-trained in multiple fields well 
enough to enable them to mold disciplinary interests to serve specific project needs. Specialists 
are better suited for that task, but they need to understand the big picture to do so. It is difficult 
for specialists to develop that broader perspective. Few analytical chemists or statisticians have 
had the opportunity to work on a project from start to finish—from sampling design through data 
generation to CSM refinement and decision-making, exposure assessment, and remedial design. 
They rarely see how their disciplinary choices impact project efficiency and costs. They are 
seldom exposed to failed dig-and-haul projects or to inefficient pump-and-treat groundwater 
remedial designs. Without that exposure, they cannot process what goes wrong and be part of a 
solution. Statisticians don’t find out whether actual site conditions bear any resemblance to the 
model used to predict sampling designs. Laboratory chemists don’t experience the consternation 
of crippled data sets because diluting out interferences raised detection limits. This means they 
are unlikely to develop ideas for improving their procedures to better serve project needs. Partly 
this is because the disciplines are “stove-piped,” and partly this is due to the long timeframes of 
projects. Months and years may pass between project planning, execution, and final resolution. 
People move on to other projects or other jobs, or simply forget what they were thinking when 
they developed a plan. Feedback about what really contributes to project success is lacking. This 
makes it difficult for the environmental community to develop general expertise (Klein, 2003).  
 
Until communication channels are opened and feedback loops closed, remediation science will 
labor as a hodgepodge of competing scientific interests and inconsistent terminology. More 
opportunity is needed to exchange lessons-learned that broaden specialists’ perspectives, 
especially those who are in a position to update the regulatory and institutional frameworks 
governing investigation and remediation practices. The Triad approach can help. Triad projects 
explicitly rely on the multidisciplinary collaboration of “allied environmental professionals” 
(Crumbling et al., 2003). In addition, the short project lifecycles typical of Triad projects 
encourages feedback about what works and what doesn’t (Crumbling et al., 2004). Close 
collaboration and rapid feedback allows analytical chemists and statisticians (and other specialty 
disciplines) working on a Triad project to see it though planning to decision-making and its 
consequences, to learn lessons first-hand, to confront faulty mental models and assumptions, and 
devise better procedures. Whereas isolation allows specialists to cling to narrow interests or 
standard assumptions (e.g., analytical perfection and assumptions of homogeneity), shared 
responsibility for project success should motivate them to tailor their contributions to serve the 
overarching goal of successful, cost-effective projects.  
 
STRENGTHENING THE DECISION-MAKING PROCESS 
 
As part of its emphasis on the management of decision uncertainty, intense and focused planning 
is a key Triad activity. Triad's critical emphasis on detailed planning seeks to avoid the all-to-
common pitfall noted by Good & Hardin: “The vast majority of errors in statistics—and, not 
incidentally, in most human endeavors—arise from a reluctance (or even an inability) to plan" 
(2003). Triad project planning and execution are structured to exploit powerful decision-making 
strategies. Each element of Triad involves decision-making processes that range from the 
structured rational choice strategy to the more dynamic recognition-primed decision model 
(Klein, 1999). The rational choice strategy (RCS) can be thought of as the classical decision 
analysis method. When applying a RCS the decision-maker identifies a set of options and ways to 
evaluate those options. He weights each evaluation criteria, ranks options with the weighted 
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criteria, and picks the option with the highest score. Listing and counting “pros and cons” is an 
example of a rational choice strategy. In contrast, the recognition-primed decision model (RPD) 
is a naturalistic method that combines two decision processes: pattern and cue recognition and 
mental simulation. In RPD, the decision-makers use prior experience to jump to the right answer 
without sorting through all available options as done in RCS. 
 
Both decision strategies have an important place in the Triad approach. Expert Triad practitioners 
freely move between both strategies as the project progresses. Understanding how Triad can 
catalyze better projects and maturation of remediation practice requires understanding how 
project decisions are first articulated and operationalized during planning, then made during 
project execution. The rational choice strategy is ideally suited as a decision model for the 
systematic planning element of Triad. RCS provides a deliberate, quantitative, systematic 
approach to complex problems. It reduces the chances that an important consideration will be 
overlooked. It also allows for more in-depth analysis of many options. RCS protects novices from 
making poor choices, and is useful when working in teams under minimal time pressure. One can 
think of the systematic planning process as a shared commitment to "get it right" from a planning 
perspective prior to committing to expensive field deployment. Using an airplane analogy, the 
“landing” is planned before the project “takes off” for the field. The RCS decision model gives all 
participants a sense of order, structure, and confidence that all worthwhile strategies have been 
considered and contingencies addressed. It also allows participants who may not yet be "experts" 
to observe and learn from experts while being one of the team and contributing in their own right. 
This is one of the ways Triad catalyzes professional learning and competency development.  
 
In contrast, the recognition-primed decision (RPD) model is applicable in decision-making 
environments where experienced decision-makers coordinate a team under time pressure and high 
stakes, often under rapidly changing conditions or inadequate information. The decision-maker 
must be prepared to adapt. Emergency personnel and soldiers work under these kinds of 
conditions. The dynamic field implementation component of Triad also exhibits many or all of 
these characteristics, so the RPD model is most applicable to that phase of a Triad project.  
 
But aspects of the RPD model also show up during Triad systematic planning, where the art of 
identifying and planning for contingencies requires pattern recognition (e.g., drawing on past 
experience to see similarities and differences in sites) and mental simulation (e.g., mentally 
walking through a scenario to construct contingency strategies to deal with potential obstacles). In 
turn, a dynamic strategy will not be successful unless RCS-structured planning was thorough in 
finding the best options given project constraints and stakeholder concerns. So it is imperative 
that the core technical team of disciplinary experts have the requisite specialized experience and 
skills. The principal components of the dynamic strategy are codified as decision flow-charts or 
matrices. These "if-then" tools will guide the decision scenarios during implementation so that the 
wishes of the planners can be carried out. Done correctly, the output of Triad systematic planning 
will be a well-crafted dynamic strategy that addresses goals and contingencies, with all 
participants feeling prepared to execute the plan.  
 
The decision trees lay out the overall decision strategy for approval by regulators. They will guide 
how field activities adapt to the continuously evolving CSM which has been designed to bring 
actual site conditions into sharp focus, no matter how heterogeneous those conditions turn out to 
be. Triad projects compress the standard timeframes of remedial investigations by providing 
flexibility to respond to real-time discoveries. This is a dynamic decision environment with 
extremely high stakes: incomplete information with the pressures of time and budget do not allow 
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decision to be deferred like conventional projects. One can imagine an analogy to military combat 
operations: once a plan is underway, it is imperative that the on-site forces be able to react 
quickly and decisively to a changing context. To the extent possible, the changing context is 
anticipated during the systematic planning phase, but larger or smaller surprises are a fact of life. 
Anticipating what might go wrong so surprises will be manageable is the reason why the core 
technical team is a group of allied professionals representing all relevant disciplinary specialists. 
The dynamic strategy must be sufficient to provide the field decision-maker with guidelines to 
operate within a changing context. Equally important, the decision-maker must be capable of 
recognizing if the planned strategy is so severely violated by actual site conditions that he needs 
to "retreat."  
 
For decision-making during a Triad remedial investigation, the most critical RPD skills are 
pattern recognition (or pattern matching) and mental simulation. Pattern recognition refers to the 
ability of an expert to detect typical patterns and/or detect anomalies that violate an expected 
pattern. This is the reason why experienced technical staff are crucial to Triad success: experts 
can recognize patterns that novices may miss, and notice when cues warn that an expected pattern 
is being violated.  
 
Triad projects “grow” experts quickly. As the CSM is tested and refined in real-time, practitioners 
quickly learn what field cues are associated with contamination, for example, where chlorinated 
solvents tend to migrate or “get stuck” in subsurface stratigraphy, or what chemically stressed 
vegetation looks like. A significant component of pattern matching is situational awareness; that 
is, the ability to observe the "big picture," and filter out irrelevant noise. In Triad projects, 
information through-put is very high. Being able to manage the increased data load and extract 
the information most relevant to a decision-point in real-time is crucial. In contrast, the traditional 
approach which expects multiple return trips to the field relegates this function to the office after 
a field mobilization is complete.  
 
Another important RPD skill is mental simulation. Mental simulation can be thought of as the 
thinking that allows experts to explain how past events caused the present situation (e.g., how an 
observed contaminant distribution came to be), and how the present will impact the future (e.g., 
how an observed contaminant distribution will behave under natural or induced conditions) 
(Klein, 1999). Exhibit 2 (next page) sketches the coupling of pattern recognition and mental 
simulation that are part of RPD during Triad investigations.  
 
The rapid feedback provided during Triad execution quickly lets the team know whether a mental 
simulation was correct, whether the plan is working, or whether something important was 
overlooked. These experiential lessons are strongly imprinted into a practitioner’s skill set, 
providing fodder for mental simulation in future projects. Even if the first Triad project 
experience didn’t go that well, the next project will benefit from those lessons-learned. Through 
case studies of Triad projects (posted through the Triad Resource Center website) and published 
articles, these lessons will be passed on to other practitioners, helping to raise the overall 
proficiency of the cleanup industry. 
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Exhibit 2. Coupled RPD pattern recognition-mental simulation model for Triad projects [after 
(Klein, 1999)]. 
 
 
BUILT FROM THE BOTTOM-UP FOR TOP-DOWN SUCCESS 
 
The Triad approach is designed from “bottom-up” in the sense that it is built on strategies that 
practitioners use at the “ground level” to achieve successful projects. But institutional barriers to 
Triad can be mitigated only by reformulating high-level administrative and regulatory strategies 
of cleanup programs from the “top-down.” The success of an administrative program is 
dependent on individual successes at the project level. Active feedback between the two levels 
can ensure that programmatic procedures are continually tailored to facilitate project success. 
Triad concepts and project examples are being used to create a communications bridge between 
top-down, high-level administrative procedures and the bottom-up technical strategies. 
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Although Triad is primarily driven by science, it creates ample space for addressing the social, 
economic, and bureaucratic constraints that strongly influence cleanup projects. Scientific and 
non-scientific considerations strongly influence each other. Science-based activities cannot be 
implemented unless higher-level policy and guidance supports the effort. In turn, the economic 
viability and reputation of cleanup programs and related public policies are dependent on our 
ability to demonstrate that our technical activities and cleanups actually protect human health and 
the environment without squandering increasingly scarce resources. Before Triad was called 
Triad, one of the early proposals for labeling this second-generation paradigm was “the Gestalt 
approach.” Although the term “Triad” won the vote, the term “gestalt” accurately reflects the 
holistic, “big picture” framework Triad embraces, where the unified whole is greater than the sum 
of its parts. Like a fine orchestra, each instrument lends its voice to an interwoven pattern 
possible only when each player harmonizes with the others while working toward a common 
goal. The multi-faceted, multi-disciplinary nature of environmental cleanup requires a paradigm 
that can catalyze the environmental community to accomplish nothing less. 
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