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INTRODUCTION 
The first-generation data quality model that equated environmental data quality with 
analytical quality was a useful starting point for the site restoration community. However, for 
many contaminated site projects this model for establishing reliable data fails in practice 
because it does not consider numerous relevant variables. The inability of the “analytical 
quality = data quality” model to ensure data representative of the intended decision is an 
important reason why cleanup projects tend to take years of repeated site characterization 
efforts to get to closure or successful remediation. Cost-effective, efficient, and defensible 
cleanup projects depend on an environmental data quality model that explicitly includes all 
major contributors to data uncertainty. 
 
The U.S. EPA has articulated the Triad approach as a practical framework that synthesizes 
new technologies and advancing science with evolving regulatory and engineering practices 
governing site cleanup. The Triad approach rests on the foundation of managing decision 
uncertainty. Managing data uncertainty, especially sampling uncertainties, is critical when 
decisions will be based on data. The second-generation framework offered by the Triad 
approach not only increases decision confidence, but also decreases project lifecycle costs by 
evolving the site conceptual model in real-time (using dynamic work strategies) whenever 
feasible. Projects implemented using Triad principles typically show lifecycle cost savings in 
the neighborhood of 30-50% as compared to first-generation strategies for site work. A key 
reason for Triad cost-savings is that characterization is performed very efficiently and 
accurately, avoiding decision errors that waste resources.  
 
The purpose of site investigation and characterization is to develop an understanding of the 
nature and extent of contamination that is accurate enough to support correct decisions—
whatever those decisions may be. The most important decision early in a project may simply 
be: Is there contamination present in quantities that could pose a risk to receptors such that 
more in-depth investigation is required? If the answer is yes, a more accurate 
conceptualization of contaminant mass, distribution, and mobility will need to be developed 
to support subsequent decisions about exposure risk and risk mitigation. If the early decision 
is faulty because isolated data points give misleading information, two types of decision 
errors are possible: 1) resources spent needlessly characterizing insubstantial contamination; 
or 2) unacceptable exposure risk from significant contamination that was missed by the 
sampling program.  
 
Contamination that is uniformly distributed throughout a matrix is easy to detect if it is 
present, and easy to conclude it is not present if isolated samples do not detect it. However, 
the physical mechanisms by which pollutant release and migration occur ensure that 
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contaminants are rarely spread evenly throughout a site’s boundaries. As illustrated later in 
this paper, contaminant heterogeneity easily lead to both kinds of decision errors unless the 
decision maker develops and tests predictions about where contamination would be if 
present. Heterogeneity can also produce misleading pictures of contamination if data 
uncertainties are not controlled. The model that predicts and describes contaminant nature 
and extent is termed the “conceptual site model” or CSM. It is the mental picture on which 
decision maker ultimately bases all project decisions. Consensus among stakeholders and 
other involved parties is possible only when all are confident that the final CSM accurately 
represents site contamination.  
 
THE CONCEPTUAL SITE MODEL 
The CSM is a picture of site contamination. Building a CSM begins with the “story” of 
 
• how contamination was released and what mechanisms cause migration or transformation; 
• what distinct spatial patterns or contaminant distributions are created by mechanisms of release, 

fate, and transport; 
• what receptors might be exposed to contamination and to how much; and 
• what might be done to cost-effectively and efficiently mitigate potential exposures. 
 
The preliminary or initial CSM is built (i.e., predicted) from  

 
• information gleaned from the site history,  
• knowledge of how contaminants are typically released,   
• knowledge of how they behave once released to the environment, and  
• existing site data, not just for contaminant concentrations, but also for parameters that 

influence contaminant behavior (e.g., pH, organic carbon content, particle size, porosity, 
stratigraphy, topology, etc.).  

 
The preliminary CSM functions as the working hypothesis about site contamination that will 
be continually tested and refined as more information (including data) are integrated into the 
contamination model. The more closely the CSM depicts reality with respect to the intended 
decisions, the more cost-effective and successful those decisions can be. The more the model 
deviates from actual site conditions, the more likely that risk decisions and remedial designs 
will be incorrect. The CSM guides design of sampling and analysis plans to fill data gaps 
obstructing confident decision-making. The CSM is the tool used to 

 
• predict the degree of contaminant heterogeneity and the nature of spatial patterning;  
• verify whether those predictions were accurate; 
• assess whether heterogeneity can compromise the performance of statistical sampling plans;  
• understand “data representativeness;”  
• communicate a common understanding and vision of the project among all stakeholders, and  
• integrate knowledge of heterogeneity and spatial patterning into decisions about exposure 

pathways, remedy selection, treatment system design, and strategies for long-term 
monitoring; i.e., reconcile the scale of sample collection/data generation to the very different 
scale(s) at which project decision(s) are made. 
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An important function of the CSM is to identify and delineate different contaminant 
populations. Contaminant release and migration mechanisms typically create spatially 
distinct populations where impacted media are interspersed among non-impacted media. This 
intermingling of populations can occur on macro (between-sample scales) and micro (within-
sample) scales. Both can have severe repercussions on the ability of contaminant 
concentration results to reliably represent contaminant nature and extent in support of project 
decisions. Contaminants may migrate through narrow flow channels (termed preferential 
pathways) whose small spatial volumes are hard to detect, but may be a primary exposure 
route.  
 
Knowledge of the physical mechanisms of contaminant release and migration can be used to 
predict contaminant locations and the degree of spatial patterning. These predictions form the 
basis for drawing up the preliminary CSM (or perhaps two or three competing preliminary 
CSMs), which are then tested as data collection confirms, rejects, or modifies the current 
CSM. Populations are most productively defined by combining knowledge of spatial 
patterning with potential site decisions. For example, Figure 1 depicts a wind deposition 
scenario creating surface soil contamination in a pattern of coarse concentration contours that 
span five orders of magnitude.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Surface contamination pattern caused by atmospheric deposition as influenced by regional 
wind patterns. 
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Obviously, a high sampling density (and a large budget) is required to achieve delineation at 
the fine scale depicted in Figure 1. A fine scale may not always be needed to effectively 
manage a site. Target populations can be defined using the project decision framework to 
determine the scale required for delineation. By way of illustration, a hypothetical scenario 
depicted in Figure 1 might require delineation of just three populations to support decisions 
about contaminated soil removal to support land reuse: natural background (up to 1, for 
which no action is required), between 1 and 1000 (for which landfill disposal is the likely 
remedial option), and greater than 1000 (destructive treatment is required). Efficient 
characterization is possible only if the decision framework is understood before the sampling 
and analysis plan is designed: a one-size-fits-all sampling plan will not work.  
 
“Sampling uncertainty” occurs because environmental matrices are heterogeneous in both 
physical composition and in pollutant distribution. The term embraces a number of factors 
that introduce variability into analytical results. Analytical data can be misleading when 
sampling variables are not controlled. Decision errors occur when accurate analytical results 
generated from tiny samples are assumed by data users to represent the concentrations of 
much larger volumes of matrix, but that extrapolation is invalid because confounding 
variables have not been acknowledged or controlled. Figure 2 illustrates how unjustified 
extrapolation of analytical results to larger volumes of matrix can produce inaccurate CSMs 
that lead to faulty decisions.  

 
Figure adapted from Argonne, 2002

Excavation based 
on the RI-derived 
CSM (black lines) 
would have —
• removed ~4,000 
c.y. compliant soil; 
&
• missed ~8,000 
c.y. non-compliant 
soil.

An accurate CSM + 
precise excavation 
(shaded areas) 
saved about $10M.

 
Figure 2.  An inaccurate CSM can lead to costly decision errors. 
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The CSM portrayed by the black outline predicts the extent of contaminated surficial soils 
requiring removal based on data collected using a traditional Remedial Investigation (RI) 
approach of sampling with fixed laboratory analysis. Before cleanup could be implemented, 
the team became concerned about excessive uncertainty in the bounded areas. Taking data 
uncertainty into account, the volume of soil needing removal and disposal (at $300 per cubic 
yard) ranged could range as low as 3,000 or as high as 46,000 cu. yd. Confident remedial 
planning based on the RI data was impossible, but newer technologies were available to 
provide high density, real-time data that could manage the decision uncertainty. The team 
decided to implement an adaptive sampling and analysis program that was integrated in real-
time with soil removal activities. By the end of the cleanup, the actual (very high confidence) 
CSM for surficial soil contamination was demonstrated to be the shaded areas. The total 
volume removed (both surficial and deeper layers) was 45,000 cu. yd. Post-cleanup sampling 
confirmed that on-site cleanup goals were attained.  Pre-disposal testing of waste soil 
confirmed the “dirty” status of removed soil. Under a Triad approach, $200,000 was spent to 
re-characterize the site to manage both decision uncertainties. If the CSM predicted by 
traditional sampling and analysis had been followed, over $1.5 million would have been 
wasted just to needlessly remove and dispose of clean soil. Since post-remediation sampling 
would have discovered that 8,000 cu. yd. of “dirty” soil were missed, one more repeat cycle 
of characterization and removal would have been required (assuming an accurate CSM was 
achieved the second time). By breaking the characterize poorly—remediate poorly—
recharacterize cycle, a $200,000 investment yielded an estimated savings of $10 million in 
cost-avoidance (DOE, 2001).  
 
Studies with modern tools show that heterogeneity impacts groundwater sampling as well. 
There is now ample evidence that vertical stratification of common pollutants occurs in many 
lithological settings. The concentration of contaminants can change drastically over short 
depth intervals. For example, chlorinated volatile organic compounds (VOCs) concentrations 
were observed to change 2,500 µg/L over a vertical distance of 3.4 feet in one well, and from 
7,300 to 17,500 µg/L over a vertical distance of 5 feet in another well (Vroblesky and Peters, 
2000). 
 
When well screens span different populations, purging and sampling the well can cause 
uncontrolled mixing between distinct populations, creating intermediate data results that 
produce erroneous CSMs. This is illustrated by Figure 3, which shows the results of a U.S. 
Geological Survey (USGS) study comparing sampling techniques for wells with long screens 
(Huffman, 2002). Chlorinated VOCs were analyzed by the same analytical method on water 
samples collected in two different ways: traditional low-flow purging with a submersible 
pump (left-hand panel) versus passive diffusion bag samplers (PDBs, right-hand panel). 
PDBs consist of a semi-permeable polyethylene “baggie” filled with distilled water that is 
lowered into a groundwater well. The PDB remains undisturbed in the well for 2 to 3 weeks, 
which allows certain contaminants to pass through the bag into the distilled water. After 
equilibration, the sampler is removed from the well and emptied into traditional vials for 
submittal to analysis. Figure 3 compares the two different sampling techniques for the same 
well field for trichloroethane (TCA) results. It is clearly evident that vertical stratification 
exists in wells 6-S-21 and MW-7. In well 6-S-21, mixing at the population boundary by the 
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traditional sampling technique created an intermediate result. The PDBs preserved 
information about distinct contaminant populations, producing a different, yet more accurate 
CSM to guide decisions about contaminant extent and remediation.  

TCA results from purged/mixed 
well water sample

TCA results from depth-
discrete well water sample

Figure adapted from 
Huffman, 2002.

Figure 3. Sampling the same well field in different ways produces different CSMs. 
 
 
THE CHALLENGE OF DATA REPRESENTATIVENESS 
Generating “representative” data is not a simple matter when heterogeneous environmental 
matrices are involved.  Figure 4 introduces the range of variables that have been found to 
impact the ability of data to provide reliable information for decision-making purposes. 
Variables that contribute to the data uncertainty can be coarsely grouped into three 
categories. The length of this paper limits discussion to only one variable, but a very 
important one regularly neglected by the environmental community. Yet each variable forms 
a link in the data quality chain, and each link must be intact if data are to be representative of 
the intended decision. The first step for ensuring representative data is to understand exactly 
how the data will be used in the decision-making process. The intended decision will define 
what population should be targeted by data collection and analysis. Sampling and analytical 
procedures must be tailored to the target population to avoid a common cause of data 
uncertainty: uncontrolled mingling of different populations. 
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Figure 4: Variables that contribute to data representativeness. 
 
 
Since contaminated sites typically encompass two or more contaminant populations, no facet 
of data collection and analysis can be left to chance. Each variable must be selected to 
maintain the chain of “data representativeness.” Breaking that chain can produce data that 
misleads decision-makers into erroneous conclusions and actions.  
 
SAMPLE SUPPORT: A CRITICAL VARIABLE FOR REPRESENTATIVE DATA 
The term “sample support” is unfamiliar to the environmental field, yet the term was 
introduced to the cleanup community in several EPA documents of the early the 1990s. The 
term even appeared in a widely circulated U.S. EPA Superfund guidance (EPA, 1993, p. 41), 
but the concept never caught on. The term comes from statistics language to collectively 
describe the physical attributes of a specimen that help determine what the analytical result 
will be. These attributes apply both to samples taken from the parent matrix in the field and 
to subsamples taken from jars in a laboratory. For environmental samples, they commonly 
include 1) the mass/volume of the sample or subsample; 2) the spatial orientation/dimensions 
of the sample collection device which helps determine the spatial dimensions of the sample 
(for example, visualize a long thin corer versus a flat-bottomed scoop; and 3) particle size. 
Differences in sample support can cause analytical results to be different, independent of any 
variability in the analytical method itself. The reason is that these attributes help define 
different contaminant populations. Sample support is listed in Figure 4 as the first variable in 
the second-generation data quality because it is a critical variable that must be controlled in 
order to target the correct contaminant population for sampling and analysis.  
 
In the groundwater sampling example discussed above, the difference between purged 
sampling and diffusion bag samples is their different sample supports in relation to the 
vertical stratification of adjacent populations. Inadvertently mixing two different populations 
through careless sample supports (when only one population is expected) creates misleading 
data. On the other hand, differing sample supports can produce non-comparable data sets, 
even if the samples are analyzed side-by-side by the exact same analytical method. 
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A number of newer analytical devices often used in situ, such as x-ray fluorescence (XRF), 
direct-push (DP) deployed laser-induced fluorescence (LIF), or DP-deployed membrane-
interface probe (MIP) with specific detectors, have very small sample supports. Figure 5 
illustrates trichloroethene (TCE) data generated by a MIP equipped with an electron capture 
detector (ECD) useful for chlorinated organics. Small sample supports can locate spatially 
discrete contaminant sources and migration conduits often missed by conventional 
monitoring wells. Monitoring wells have traditionally been placed “blind.” Without a tool 
like the direct push MIP that develops the CSM (by detecting distinctly different populations) 
before well placement, data results and interpretation are highly uncertain. A well placed in 
the location represented in Figure 5 could be screened in any one of many possible 
configurations of depth and screen length, as illustrated by wells A, B and C. The TCE 
concentration expected from well configuration A could be very different from data produced 
by other configurations placed in the same bore hole.  
 

Graphic adapted from 
Columbia Technologies
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Figure 5. Different Sample Support Changes Analytical Results for GW 
 
 
These different analyte concentrations are not the product of analytical uncertainty, but of 
sampling uncertainty. Data can be misleading if the sample support variable is not controlled. 
 
Particle size is another physical aspect of sampling (i.e., sample support) that must be 
controlled when micro-scale heterogeneity is present (i.e., different populations are present in 
the same specimen). Table 1 summarizes a study that examined the relationship between the 
size of native soil particles and lead concentration at a firing range site (ITRC, 2003). The 
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smaller the particle size, the higher the lead concentration. The bulk average concentration is 
about half the concentration of the smallest particles. Whether the bulk average is the correct 
sample support depends on the decision. Suppose the decision is to assess exposure risk from 
dust blowing off-site into local homes, sticking to children’s fingers, which go into their 
mouths—the smallest particle size is representative of this exposure decision. Using the bulk 
average value as a default could underestimate true exposures by a factor of 2. 
 

Table 1.  Lead Concentration as a Function of Particle Size (after ITRC, 2003) 
 

Soil Grain Size   
(Standard Sieve Mesh Size) 

Soil Fraction-
ization (%) 

Pb Conc. in fraction 
by AA (mg/kg) 

Lead 
Distribution 

Greater than 3/8” (0.375”) 18.85 10 0.20 
 Between 3/8 and 4-mesh” 4.53 50 0.24 
Between 4- and 10-mesh 3.65 108 0.43 

Between 10- and 50-mesh 11.25 165 2.00 
Between 50- and 200-mesh 27.80 836 25.06 

Less than 200-mesh 33.92 1,970 72.07 
Totals 100% 927 (wt-averaged bulk) 100% 

 
 
Particle size also impacts laboratory subsampling procedures. What particle sizes are 
preferentially captured by subsampling? A spoon-shaped scoop will retain a different mix of 
particle sizes than a narrow, flat spatula. Has the laboratory been advised what particle size 
they should target to maintain data representativeness for the specific decision(s) intended by 
the data users or project manager? 
 
The phenomenon of highly concentrated particles encountered in Table 1 helps explain why 
smaller sample and subsample volumes produce more highly variable analytical results. A 
study in 1978 by the Department of Energy demonstrated this with soil from an area 
contaminated with americium-241 (Am-241, a radionuclide). A large volume of soil was 
sampled and containerized. It was carefully homogenized by drying, ball-milling, and sieving 
through a 10-mesh screen. Twenty subsamples each of various masses were taken and 
analyzed separately. The results are summarized in Table 2. Obviously, the larger the 
subsample, the less variable the results, and the much more reliably any single subsample 
result estimated the true mean (1.92 ppm) for the original sample.  

 
Table 2.   Subsampling Variability (adapted from Doctor and Gilbert, 1978) 

 
Subsample Mass (g) Range of Results for 20 Individual Subsamples (ppm) 

1 1.01 to 8.00 
10 1.36 to 3.43 
50 1.55 to 2.46 
100 1.70 to 2.30 
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A decision error could occur if a data user got the result of 8 ppm from a 1-gram subsample, 
and then assumed that the result represented the true concentration for the entire jar of 
sample (an error of about 400%). The error would be further compounded if that 8 ppm result 
was extrapolated to represent the concentration of Am-241 for a large portion of the site. 
Even with homogenization (which is never perfect), the smaller the subsample, the less likely 
that its result represents the average concentration for the original jar of soil. This is a 
problem for analytical chemistry: as instrumentation becomes more and more sophisticated, 
the mass of sample used by the laboratory to actually generate the analytical result is trending 
lower and lower. One gram is a standard sample size for soil digested for metals analysis. 
Results are viewed as “gold-plated” simply because of the accuracy of the determinative 
method (refer to Figure 4). But that is simply the last link in a chain of events made of weak 
links that are largely uncontrolled by standard practices for project planning and laboratory 
analysis. 
 
SUMMARY 
“Data representativeness” is the idea that we expect to extrapolate the data results from tiny 
matrix samples to draw conclusions about much larger populations. The tremendous 
mismatch in spatial scale between the volume of analytical samples and the volume of 
heterogeneous matrix targeted by projects decisions poses a severe challenge for 
“representative data.” Data will be representative only if each sampling and analytical 
variable has been planned in advance to match the intended decision. CSMs are the tools 
used to develop and test hypotheses about what different contaminant populations may be 
present at the site, what variability is expected within each population, and how each 
population relates to the analytical and decision-making processes.  
 
The U.S. EPA has articulated the Triad approach as a practical framework that synthesizes 
new technologies and advancing science with evolving regulatory and engineering practices 
governing site cleanup. The Triad approach rests on the foundation of managing decision 
uncertainty. Managing data uncertainty, especially that contributed by sampling uncertainty, 
is critical when decisions are being based on data. The second-generation framework offered 
by the Triad approach not only increases decision confidence, but also decreases project 
lifecycle costs by evolving the site conceptual model in real-time (using dynamic work 
strategies) to the extent feasible. The payoff for real-time decision uncertainty management is 
that Triad projects typically show lifecycle cost savings in the neighborhood of 30-50% as 
compared to first-generation strategies for site characterization, remediation, and monitoring.  
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