DRAFT

Best Management Practices Inventory for Triad Elements

Cover Page

The goal for Triad projects is to produce project decisions that are protective, transparent, defensible, and confident, while also being as cost-effective and efficient as possible. A wide variety of tasks go into achieving these goals. Collectively, the high and low level details of these tasks can be termed the "**management of decision uncertainty**." This concept is the basis of the Triad framework. All other Triad concepts and activities are built around this goal.

This **inventory is intended to aid practitioners to operationalize** Triad concepts. It can be used as a checklist of current best practices that are integral to successful Triad projects. Although a few entries are optional depending on the specifics of the project, a good Triad project will demonstrate nearly every aspect of this inventory. The structure of this framework ensures that planning considers best practice options, that implementers will have clear goals and performance measures, and that practitioner education includes best practices.

Do not be intimidated by the **length of this inventory**. Many items (but not all) simply spell out formally activities that are already frequently done by most practitioners. The list serves to "put meat on the bones" of the Triad framework. A simple check-the-box table is used to ensure that all aspects of a Triad project have been considered during project planning, implementation, or post-implementation review.

"Managing uncertainty" requires that both well-known and cutting-edge best practices be incorporated into Triad projects whenever they are appropriate. **Additional best practices** will undoubtedly emerge as science and technology advance, and as collective practitioner experience expands and deepens. As is the very nature of uncertainty management, emerging best practices are automatically incorporated "by reference" into the Triad framework

At the start of each major section, 4 to 5 general concepts or tasks are listed. Below that, the general listings are broken down into more specific individual tasks which, when put into operation by an experienced team, create the integrated approach that constitutes a successful Triad project.

Best Management Practices Inventory for Triad Elements DRAFT

Triad Project Planning Features	Absent	Present, but unclear	Clearly written
<u>G</u> ENERAL <u>P</u> LANNING ITEMS			
GP1) Consideration of end-goals/preferred reuse of the site given site owner, stakeholder, and regulatory interests.			
GP2) Collaboration among <u>all</u> interested parties (including financial institutions, contracting & legal staff) throughout the planning & implementation lifecycle. Representation of all relevant science & engineering disciplines during planning.			
GP3) Discovering & articulating decision uncertainties that will need to be managed to have a successful project			
GP4) Creating a detailed CSM & updating it over the entire life of the site.			
<u>D</u> ETAILED <u>P</u> LANNING ITEMS			
DP1) SOCIAL CAPITAL (trust, open communication, cooperation, respect for other parties' interests)			
DP2) OUTREACH to all appropriate parties/stakeholders			
DP3) EXPERIENCED STAFF with the required expertise have been identified and accessed			
DP4) Clear consensus on the desired project OUTCOME			
DP5) Preliminary CSM developed from existing information & updated as more information obtained			
DP6) Clear articulation of regulatory, scientific, social & engineering DECISIONS supporting desired outcome(s), which include life-cycle site planning			
DP7) Articulate the UNKNOWNS (uncertainties) that inhibit confident decision-making			
DP8) General & (later) detailed descriptions of STRATEGIES to manage those decision unknowns/uncertainties			

Triad Project Planning Features (cont'd)	Absent	Present, but unclear	Clearly written
DP9) Describe INFORMATION gathering/generation techniques (e.g., records reviews, interviews, GW flux testing, photo analysis, chemical data generation, geophysical tests, etc.) to manage unacceptable uncertainties to an acceptable level.			
DP10) Develop a WEIGHT OF EVIDENCE approach that explains how which information will manage which decision uncertainties			
DP11) Acknowledgement of potential & actual sources of INFORMATION UNCERTAINTY & relevance to decision confidence			
DP12) Information acquiring technique selection is guided by evaluation of the COST-BENEFIT value of the information.			
DP13) Identification of REGULATORY authorities/ARARs			
DP14) Project FUNDING & CONTRACTING mechanisms; monitor budget status			
DP15) Known & potential RPs & legal considerations			
DP16) Include the costs of environmental INSURANCE & redeveloper risk (and how decision uncertainty affects both) on the site's lifecycle costs			
DP17) Assess whether the project (or parts of the project) can benefit from REAL-TIME DYNAMIC/ADAPTIVE work strategies			
DP18) Ensure planning process is well-documented in acceptable WORK PLAN or QAPP formats			
DP19) Outline the communication & documentation process for recording & justifying when there are substantial implementation DEVIATIONS from that written & approved in the planning documents.			
DP20) Plan for on-going documentation of the information materials that would be included in a structured CASE STUDY write-up.			

<u>CSM</u> Features (systematic planning activity)	Absent	Present, but unclear	Clearly written
CSM MATERIALS clearly describe:			
CSM1) known & suspected contaminant sources, release			
mechanisms, and amount released;			
CSM2) fate (including degradation products) &			
transport/migration mechanisms;			

CSM Feature cont'd	Absent	Present, but unclear	Clearly written
CSM3) known or suspected contaminated media (waste, soil,			
GW, SW, sediment), spatial/temporal boundaries, and define at			
least 2 (and probably more) separate contaminant populations in			
the context of the project's intended decisions;			
CSM4) likely interactions between contaminants and matrix			
constituents;			
CSM5) degree of contaminant heterogeneity (contaminant			
distribution) at long-, short, and within-sample spatial scales;			
CSM6) evaluate degree of mismatch between matrix variability,			
decision support & the sample support of anticipated sampling			
& analysis techniques;			
CSM7) known or potential reuse options, prioritize according to			
stakeholder wishes, expected site conditions, & the projected			
cost to achieve 1^{st} choice, 2^{nd} choice, etc.			
CSM8) known & potential exposure pathways & receptors;			
CSM9) probable remedial, redevelopment or IC options to			
achieve site reuse & reduce/eliminate receptor exposures.			
CSM10) determine decision support for each characterization,			
exposure, remedial or compliance decision			
CSM11) determine proper sample design, collection & handling			
techniques to tailor sample support to be representative of the			
various decision supports			
CSM12) consider what graphical or mapping techniques may be			
used to display chemical data & other information comprising			
the CSM in a form that is easily understood			
CSM13) continually re-evaluate what information is needed to			
guide selection, design & operation of effective remedial			
techniques			
CSM14) predict what information the CSM will provide when			
it is mature enough to support each decision			
CSM15) CSM UPDATES are recorded regularly in project			
documentation, and the information passed onto future teams			
involved with the site.			

Continued...

Reducing Uncertainty through Information			~
Note: "Information" includes both measurement (chemical	Absent	Present, but	Clearly
& non-chemical) & non-measurement information	1105cm	unclear	written
<u>GENERAL INFORMATION ITEMS</u>			
GENERAL INFORMATION ITEMS			
GI1) Shows understanding of Triad principle that decision			
uncertainty is managed by using/gathering the best available			
information as efficiently & economically as feasible.			
GI2) Clear articulation of what information is needed to			
reduce the risk of making the wrong decision(s) (i.e., manage			
decision uncertainties).			
GI3) Match decision uncertainty management to various			
management strategies: 1) better utilize existing information; 2)			
gather new non-measurement information; 3) gather new			
measurement information. (See below)			
GI4) Evaluate all sources of information uncertainties (for			
both measurements & non-measurements. For measurements,			
consider the effect of heterogeneity & the appropriately uses &			
limitations of statistical analyses & other descriptive &			
predictive models.			
GI5) Employ collaborative data sets (when analyzing the same			
analytes by different analytical chemical methods) and weight-			
of-evidence approaches (to blend different types of information			
into the CSM) to manage various kinds of information			
uncertainties and data interpretation.			
DETAILED INFORMATION ITEMS			
DI1) Articulate devisions to be made to achieve site nonzo en			
DI1) Articulate decisions to be made to achieve site reuse or			
other long-term goals for site (not just for this project) & what			
general information is needed to achieve site goals.			
DI2) Use long-term goals as an anchor for defining what contribution this project will make for achieving long-range			
site goals. Determine what general information is needed to			
make project decisions that achieve project goals.			
DI3) Over the course of project planning, break general			
information needs down into the specific information needed			
to address specific project decisions.			
DI4) For each type of information, consider whether the project			
team is unsure about the reliability of that information (i.e., are			
there uncertainties in the information ?).			
DI5) Evaluate whether some decision uncertainties can be			
managed by accessing existing , but under-utilized,			
information (i.e., non-measurement & measurement data).			
DI6) Evaluate whether some decision uncertainties can be			
managed by gathering <u>new non-measurement</u> information ,			
e.g., Find out what stakeholders' interests are regarding site			
reuse. Are there new budget priorities? Will legal, regulatory,			
insurance & lender negotiations affect project goals &			
decisions, decision transparency & confidence level?			

		Present, but	Clearly
Managing Information Uncertainties cont'd	Absent	unclear	written
DI7) Evaluate whether some decision uncertainties can be			
managed by designing efficient strategies to generate &			
interpret <u>new measurement</u> information (both chemical &			
non-chemical, e.g., contaminant concentrations, DO, hardness,			
GPS, geophysical, geotechnical, ecological,), while avoiding			
duplication & non-informative data.			
<u>D</u> ETAILED <u>D</u> ATA ITEMS			
DD1) Consider the RANGE OF DATA generation &			
management options available & applicable for a weight-of-			
evidence approach that includes field analytics, <i>in situ</i> sensing			
systems, geophysical & geotechnical tools, traditional			
laboratories, locational, etc., & computer systems/GIS that assist			
project planning & data storage, display, mapping, statistics &			
sharing/transfer.			
DD2) Each kind of data to be collected should be matched to			
the data needs identified to support INTENDED PROJECT			
DECISION(S)			
DD3) Include all potential DATA USERS (such as risk			
assessors, statisticians, legal staff, etc,) when planning data			
collection			
DD4) Design analytical INSTRUMENT usage consistent with			
instrumental strengths & limitations			
DD5) Estimate the amount & kind of QC required to meet			
various data quality requirements on a decision-by-decision			
basis & be prepared to modify QC based on increased or			
decreased QA needs to accommodate matrix, method &			
decision situations (ADAPTIVE FOCUSED QC			
PROTOCOLS)			
DD6) List analytical QC checks & the CORRECTIVE			
ACTIONS to take when a QC check fails			
DD7) Continually assess whether real-time data is			
CONSISTENT WITH THE DEVELOPING CSM; if not,			
increased QC, data replication and/or data density may be			
needed to ensure data & CSM confidence			
DD8) A demonstration of methods applicability (DMA)			
(attached to or detached from the main field work mobilization)			
is performed where performance of sampling & analysis tools is			
in doubt. Use DMAs to optimize field tools, their			
implementation, data management, and work flow. Also use			
DMA results to evaluate and optimize strategies for data			
generation, QC, information sharing & info management for			
their ability to support real-time decisions.			
DD9) CONTINGENCIES /back-up plans for sampling,			
analytical & software equipment failures			

Planning for Data Collection cont'd	Absent	Present, but unclear	Clearly written
DD10) SOURCES OF UNCERTAINTY in data are explicitly			
discussed and the partitioning between sampling vs. analytical			
variability/uncertainty is predicted & re-evaluated during			
refinement of the data collection process			
DD11) CSM features are used to help sampling design &			
handling & choice/combination of analytical options			
(constructing COLLABORATIVE DATA SETS)			
DD12) Mechanisms are developed to evaluate DATA			
COMPARABILITY for using collaborative data sets			
DD13) DATA QUALITY TERMS ("screening data quality"			
and "definitive data quality") are used consistent with the			
language of managing decision uncertainty			
DD14) DATA REPRESENTATIVENESS articulated in terms			
of "representative of <what matrix=""> in the context of <what< td=""><td></td><td></td><td></td></what<></what>			
decision>"			
DD15) Include data-related EXPERTS (labs, field analysts,			
instrument vendors, field-samplers, GPS, software users) in up-			
front project planning			
DD16) Consider the THROUGHPUT of sampling & analytical			
techniques when predicting field time required & on-site			
analysis costs			
DD17) Evaluate sampling/analysis costs on a lifecycle basis			
rather than just a PER-SAMPLE COST basis			

Real-time Dynamic/Adaptive Work Strategies	Absent	Present, but unclear	Clearly written
<u>G</u> ENERAL <u>A</u> DAPTIVE ITEMS			
GA1) Evaluate whether a dynamic/real-time field decision strategy can improve the quality of the project , while saving time & money. Evaluate whether the needed expertise & equipment are available.			
GA2) Lay out the adaptive work strategy & logic in decision trees (or similar mechanism) that also address contingencies, and obtain stakeholder/regulator buy-in.			
GA3) Structure the work plan to accept real-time information/input from regulators & stakeholders in response to further refinement of the CSM & project progress.			
GA4) Use real-time strategies to efficiently ground-truth & evaluate the performance of predictive models before accepting model predictions.			

Real-time Dynamic/Adaptive Work Strategies cont'd	Absent	Present, but unclear	Clearly written
<u>D</u> ETAILED <u>A</u> DAPTIVE ITEMS			
DA1) CAN A DYNAMIC STRATEGY OFFER			
BENEFITS? For this project consider whether moving some			
decision-making to the field improves decision confidence,			
speed site resolution & reuse, and reduce site lifecycle costs			
DA2) The INTENDED OUTCOMES & goals desired from			
the dynamic activities are clearly described			
DA3) The real-time decision-making strategy is CLEARLY			
DESCRIBED in flow charts, decision trees, tables or text.			
DA4) The dynamic decision strategy (e.g., the decision tree) is			
APPROVED by regulators in writing			
DA5) Must have property access to make a DWS work. Need			
physical access to offsite properties (ie access agreements) if			
plan to search for sources or define extent. Define the spatial			
boundaries of field work.			
DA6) A mechanism is provided to easily access OFF-SITE			
EXPERTISE when needed			
DA7) The dynamic strategy includes descriptions for			
HANDLING LOW PROBABILITY EVENTS OR			
"SURPRISES" outside the scope of the approved decision			
trees; for example, when to stop work to consult with regulators			
& stakeholders about future direction			
DA8) Real-time compilation of data & incorporation of new			
information into the EVOLVING CSM			
DA9) Website or other mechanisms to facilitate REAL-TIME			
DATA SHARING & activity updates with regulators & other			
stakeholders so they can closely follow field progress			
DA10) Develop an adaptive strategy for data management, i.e.,			
what will be done if data transfer, storage or mapping tools do			
not function as intended. Ensuring the performance of data			
handling tools should be considered when designing the DMA.			
DA11) Make preliminary or unpolished information available to			
stakeholders wishing to see it; trust built thru			
TRANSPARENCY			
DA12) Accommodate REAL-TIME STAKEHOLDER			
INPUT into field implementation to build confidence/comfort			
with the process or address new concerns as they arise			
DA13) Extend dynamic strategy to include REMEDY-			
RELATED DECISION-MAKING to degree feasible			
DA14) Consider whether a dynamic strategy can test and refine			
1) fate & transport, and 2) exposure pathway MODEL			
assumptions in real-time & improve the model's predictive			
performance			
DA14) Consider whether a dynamic strategy can improve			
CLEANUP PERFORMANCE of on-going remedial systems			
while reducing O&M costs			

DA15) Consider whether a dynamic strategy can MONITOR FOR FUGITIVE EMISSIONS from		
remedial systems to ensure stakeholder comfort with		
process safety		